Electrical properties of $(Ba,Sr)TiO_3$ thin films and conduction mechanism of leakage current

$(Ba,Sr)TiO_3$박막의 전기적 성질과 누설전류 전도기구

  • Published : 2000.09.01

Abstract

BST thin films were prepared with various deposition conditions by rf-magnetron sputtering. As substrate temperature increases and Ar/$O_2$ratio decreases, the electrical properties of the BST films improve. The conventional Schottky model and modified-Schottky model were introduced in order to investigate the leakage-current-conduction mechanisms of the deposited films. It was found that the modified-Schottky model better describes the current-conduction mechanism in the BST films than the conventional Schottky model. From the modified-Schottky model, optical dielectric constant ($\varepsilon$), electronic drift mobility ($\mu$), and barrier height $({\phi}_b)are calculated as $\varepsilon$=4.9, $\mu$=0.019 $\textrm{cm}^2$/V-s, and ${\phi}_b=0.79 eV.

고주파 스퍼터링 방법으로 증착조건을 변화시키면서 BST 박막을 제작하였다. 증착온도가 높을수록, Ar/O$_2$비가 적을수록 우수한 전기적 특성을 보였다. 누설전류 전도기구를 분석하기 위해 Schottky모델과 modified-Schottky모델을 도입하였다. BST 박막의 누설전류 전도기구는 기존의 Schottky모델이 아니라 modified-Schottky 모델을 따른다는 것을 알았다. Modified-Schottky 모델을 사용하여 광학유전상수 $\varepsilon$=4.9, 이동도 $\mu$=0.019 $\textrm{cm}^2$/V-s, 그리고 장벽높이 $\phi_b$ =0.79 eV를 구하였다.

Keywords

References

  1. Jpn. J. Appl. Phys. v.36 Y. Takeshima;K. Shirasuyu;H. Takagi;Y. Sakabe
  2. Jpn. J. Appl. Phys. v.34 T. Nakamura;Y. Yamanaka;A. Morimoto;T. Shimizu
  3. Jpn. J. Appl. Phys. v.32 N. Ichinose;T. Ogiwara
  4. J. Mat. Sci. Lett. v.17 S-H. Paek;K.-S. Lee;J-Y.;J-Y. Sung
  5. J. Korean Phys. Soc. v.32 H.J. Cho;H.J. Kim
  6. Appl. Phys. Lett. v.64 K. Takemura;T. Sakuma;Y. Miyasaka
  7. Jpn. J. Appl. Phys. v.37 S. Horita;S. Horii;S. Umemoto
  8. Appl. Phys. Lett. v.64 O. Auciello;K. D. Gifford;A. I. Kingon
  9. Jpn. J. Appl. Phys. v.36 K. Suu;A. Osawa;Y. Nishioka;N. Tani
  10. Appl. Phys. Lett. v.74 J. Robertson;C. W. Chen
  11. Appl. Phys. Lett. v.74 B. Nagaraj;T. Sawhney;S. Perusse;S. Aggarwal
  12. Thin Solid Films v.348 R. E. Avila;J. V. Caballero;V. M. Fuenzalida;I. Eisele
  13. Science and Technology of Electroceramic Thin Films R. Waser
  14. J. Appl. Phys. v.81 Y. P. Wang;T. Y. Tseng
  15. J. Appl. Phys. v.82 G. W. Dietz;R. Waser;S. K. Steffer;C. Basceri;A. Z. Kingon
  16. Phys. Rev. v.157 C. N. Berglund;W. S. Baer
  17. Phys. Rev. Lett. v.15 J. G. Simmons
  18. Appl. Phys. Lett. v.73 Sufi Zafer;Robert E.Jones;Bo Jiang
  19. Thin Solid Films v.348 W. T. Lim;K. R. Cho;C. H. Lee
  20. Appl. Phys. Lett. v.64 Koichoi Takemura;Toshiyuki Sakuma;Yoichi Miyasaka
  21. Ph.D. The Pennsylvania State University Processing/structure/property relationship of barium strontium titanate thin films for dynamic random access memory application Peng, Cheng-Jien
  22. Phys. Rev. v.143 H. P. R. Frederikse;W. R. Hosler;W. R. Thurber
  23. J. Phys. v.C17 D. Keroack;Y. Lepine;J. L. Brebner
  24. J. Phys. v.C12 J. P. Boyeaux;F. M. Michel-Calendini