Deposition and Characteristics of TiN Thin Films by Atomic Layer Epitaxy

ALE 법에 의한 TiN 박막의 증착 및 특성

  • Kim, Dong-Jin (School of Electronic & Electrical Engineering Kyungpook National University) ;
  • Jung, Young-Bae (School of Electronic & Electrical Engineering Kyungpook National University) ;
  • Lee, Myung-Bok (School of Electronic & Electrical Engineering Kyungpook National University) ;
  • Lee, Jung-Hee (School of Electronic & Electrical Engineering Kyungpook National University) ;
  • Lee, Yong-Hyun (School of Electronic & Electrical Engineering Kyungpook National University) ;
  • Hahm, Sung-Ho (Sensor Technology Research Center, Kyungpook National University) ;
  • Lee, Jong-Hwa (R & D Center, Photo mask Division, R.K. LTD.)
  • 김동진 (慶北大學校 電子電氣工學部) ;
  • 정영배 (慶北大學校 電子電氣工學部) ;
  • 이명복 (慶北大學校 電子電氣工學部) ;
  • 이정희 (慶北大學校 電子電氣工學部) ;
  • 이용현 (慶北大學校 電子電氣工學部) ;
  • 함성호 (慶北大學校 센서 技術 硏究所) ;
  • 이종화 (피케이株式會社 포토마스크 事業附屬 硏究所)
  • Published : 2000.06.01

Abstract

The TiN thin films were deposited by ALE(atomic layer epitaxy) on (100) silicon substrate. The TiN thin films were characterized by means of XRD, 4-point probe, AFM, AES and SEM. TEMAT(terakis(ethyl methy lamino)titanium) and $NH_3$ were injected into the reactor in sequence of TEMAT-$N_2-NH_3-N_2$ to ensure a saturated surface reaction. As a result, the depostion rate of the TiN film was controlled by self-limiting growth mechanism at temperature range form 150 to 220 $^{\circ}C$. Deposited TiN films, all of which show amorphous structure, had a fixed deposition rate of 4.5 ${\AA}$/cycle. The resistivity of 210 ~ 230 ${\mu}{\Omega}{\cdot}$cm and the surface r.m.s. roughness of 7.9 ~ 9.3 ${\AA}$ were measured. When TiN film of 2000 ${\AA}$ were deposited, a excellent step coverage were observed in a trench structure of 0.43${\mu}m$ contacts with 6:1 aspect ratio.

ALE(atomic layer epitaxy)법을 이용하여 (100)면의 Si 기판위에 TiN 박막을 증착하였다. 증착된 TiN 박막을 XRD, 4-point probe, AFM, AES, SEM등의 장비를 사용하여 분석하였다. ALE법에 의한 TiN의 증착을 위한 반응 전구체(precusor)로는 TEMAT(tetrakis (ethylmethylamino)titanium)와 반응 가스로는 $NH_3$를 사용하였다. 표면 포화반응을 형성하기 위해 각 반응 기체는 TEMAT-$N_2-NH_3-N_2$의 순서로 교대로 반응로에 주입하였다. 그 결과 TiN 박막은 150 ~ 220 $^{\circ)C$에서 자기 제어 성장(self-limiting growth) 기구에 의한 박막 증착 특성을 보였다. 증착된 TiN 박막은 증착율이 4.5 ${\AA}$/ cycle로 일정하였고, 비정질 (amorphous)의 구조를 보였다. 박막의 저항율과 표면 평균 거칠기는 210~230${\mu}{\Omega}{\cdot}$cm와 7.9~9.3${\AA}$로 측정되었다. TiN 박막을 2000 ${\AA}$의 두께로 증착하였을 때, 폭이 0.43${\mu}$m이고 단차비 (aspect ratio)가 6인 트렌치 구조에서 매우 우수한 단차피복성을 보였다.

Keywords

References

  1. K. Y. Ahn, M. Wittrner, and C. Y. Ting, 'Investigation of TiN films reactively sputtered using a sputter gun', Thin Solid Films. 107(1983), 45-54 https://doi.org/10.1016/0040-6090(83)90006-8
  2. J. -E. Sundgren, 'Structure and properties of TiN coatings', Thin Solid Films, 128(1985), 21-44 https://doi.org/10.1016/0040-6090(85)90333-5
  3. M. M. Farahani et al., 'A Study of Electrical, Metallurgical and Mechanical Behaviors of Rapid Thermal Processed Ti Films in $NH_3$,' J. Electrochem Soc., Vol. 141, No. 2(1994), 479-495
  4. Do-Heyoung Kim et al., 'Diffusion barrier performance of chemically vapor deposited TiN films prepared using tetrakis-dimethyl-amino titanium in the Cu/TiN/Si structure', Appl. Phys. Lett., 69(27), 4182-4184(1996) https://doi.org/10.1063/1.116979
  5. J. O. Olowolafe, Jian Li, and J. W. Mayer, 'Interactions of Cu with $CoSi_2$, \;CoSi_2\;and\;TiSi_2$, with and without TiNx barrier layers,' J. Appl. Phys., 68(12), 6207-6212(1990) https://doi.org/10.1063/1.346912
  6. Shi-Qing Wang et al., 'Reactively sputtered TiN as a diffusion barrier between Cu and Si,' J. Appl. Phys., 68(10), 5176-5187(1990) https://doi.org/10.1063/1.347059
  7. Degang CHENG et al., 'Surface protrusions of Chemical Vapor Deposited TiN Films Caused by Cu Contamination of Silicon Substrates,' Jpn. J. Appl. Phys., Vol. 37, L607-L609(1998) https://doi.org/10.1143/JJAP.37.L607
  8. 김재호 등, 'Carrier gas($N_2$ He)가 MOCVD TiN 형성에 미치는 영향에 대한 연구,' 한국재료학회지, Vol. 6, No. 4, 388-394(1998)
  9. L. Hiltunen et al., 'Nitrides of titanium, niobium, tantalum and molybdenum grown as thin films by the atomic layer epitaxy method,' Thin Solid Films, 166(1988), 149-154 https://doi.org/10.1016/0040-6090(88)90375-6
  10. Mikko Ritala et al., 'Atomic Layer Epitaxy Growth of TiN Thin Films,' J. Electrochem Soc. Vol. 142, No. 8, 2731 2737(1995)
  11. Akiyoshi Watanabe, Toshiro Isu et al., 'The Mechanism of Self-Limiting Growth of Atomic Layer Epitaxy of GaAs by Metalorganic Beam Epitaxy Using Trimethylgallium and Arsine,' Jpn, J. Appl, Phys, 28(7), L1080-1082(1989) https://doi.org/10.1143/JJAP.28.L1080
  12. J. R. Gong et al., 'Atomic layer epitaxy of AlGaAs,' Appl. Phys. Lett., 57(4), 400-402(1990) https://doi.org/10.1063/1.103675
  13. Tuomo Suntola, 'Atomic layer epitaxy,' Thin Solid Films, 216(1992), 84-89 https://doi.org/10.1016/0040-6090(92)90874-B
  14. Lee JG, Choi JH et al, 'Chemical Vapor Deposition of TiN Films from Tetrakis(ethylmethylamido)titanium and Ammonia,' Jpn J. Appl. Phys, 37(12B), 6942-6945(1998) https://doi.org/10.1143/JJAP.37.6942