Intercomparison of Satellite Data with Model Reanalyses on Lower- Stratospheric Temperature

하부 성층권 온도에 대한 위성자료와 모델 재분석들과의 비교

  • Yoo, Jung-Moon (Department of Science Education, Iwha Womans University) ;
  • Kim, Jin-Nam (Department of Science Education, Iwha Womans University)
  • 유정문 (이화여자대학교 과학교육과) ;
  • 김진남 (이화여자대학교 과학교육과)
  • Published : 2000.04.28

Abstract

The correlation and Empirical Orthogonal Function (EOF) analyses over the globe have been applied to intercompare lower-stratospheric (${\sim}$70hPa) temperature obtained from satellite data and two model reanalyses. The data is the19 years (1980-98) Microwave Sounding Unit (MSU) channel 4 (Ch4) brightness temperature, and the reanalyses are GCM (NCEP, 1980-97; GEOS, 1981-94) outputs. In MSU monthly climatological anomaly, the temperature substantially decreases by ${\sim}$21k in winter over southern polar regions, and its annual cycle over tropics is weak. In October the temperature and total ozone over the area south of Australia remarkably increase together. High correlations (r${\ge}$0.95) between MSU and reanalyses occur in most global areas, but they are lower (r${\sim}$O.75) over the 20-3ON latitudes, northern America and southern Andes mountains. The first mode of MSU and reanalyses for monthly-mean Ch4 temperature shows annual cycle, and the lower-stratospheric warming due to volcanic eruptions. The analyses near the Korean peninsula show that lower-stratospheric temperature, out of phase with that for troposphere, increases in winter and decreases in summer. In the first mode for anomaly over the tropical Pacific, MSU and reanalyses indicate lower-stratospheric warming due to volcanic eruptions. In the second mode MSU and GEOS present Quasi-Biennial Oscillation (QBO) while NCEP, El Ni${\tilde{n}}$o. Volcanic eruption and QBO have more impact on lower-stratospheric thermal state than El Ni${\tilde{n}}$o. The EOF over the tropical Atlantic is similar to that over the Pacific, except a negligible effect of El Ni${\tilde{n}}$o. This study suggests that intercomparison of satellite data with model reanalyses may estimate relative accuracy of both data.

측과 모델에서 각각 유도된 하부 성층권의 온도를 비교 ${\cdot}$ 분석하기 위하여 전구에 대한 1980-98년 기간의 위성관측 MSU 채널4 (하부 성층권) 밝기온도와 두 개의 대기대순환 모델(NCEP, 1980-97년; GEOS, 1981-94년) 재분석 자료를 상관 및 경험직교함수 분석을 통하여 조사하였다. 월평균 기후값의 아노말리에서 MSU 온도는 남반구 겨울에 고위도 지역에서 현저하게 감소하였으나 (20-22K), 남반구 봄인 10월에는 오스트레일리아의 이남 지역에서 하부 성층권 온도 및 오존 전량이 주목 할만하게 동시에 상승하였다. 열대지방에서는 온도 연주기가 중 ${\cdot}$ 고위도에 비하여 뚜렷하지 않았다. 전구 대부분의 지역에서관측과 모델 사이에 상관은 높았으나 (r${\ge}$0.95), 아열대 제트기류가 통과하는 20N-3ON 지역, 북미 대륙 그리고 안데스산맥 남단지역에서 낮았다(r${\sim}$O.75). MSU 및 모델 재분석들의 월평균값에 대한 모드 1은 연주기와 함께 화산 폭발시에 하부 성층권의 온도 상승을 나타냈다. 한반도 지역에 대한 분석은 하부 성층권 온도가 대류권과 대조적으로 여름에 하강하고 겨울에 상승하는 형태를 보였다. 열대 태평양에 대한 MSY 및 재분석들의 아노말리 모드 1은 화산폭발에 의한 하부 성층권 온도 상승을 나타냈다. 모드 2는 MSH와 GEOS에서 준2년 주기진동 (QBO), 그러나 NCEP에서 엘니뇨 특징을 보였다. 엘니뇨 특징은 MSU와 GEOS의 경우에 모드 3에서 나타났다. 관측과 모델 모두에서 하부 성층권 온도에 대한 기여율이 대체로 화산폭발, QBO, 엘니뇨 순으로 높았다. 열대 대서양의 결과도 무시할 만한 엘니뇨 기여를 제외하고 열대 태평양과 비슷하였다 본 연구는 하부 성층권 온도에 대한 위성관측과 모델 재분석 자료와의 비교를 통하여 상호 정확성을 진단할 수 있음을 보여준다.

Keywords

References

  1. 일반기상학 곽종흠;소선섭
  2. 한국지구과학회지 v.19 마이크로파 위성자료의 하부성층권 은도에 대한 경험직교함수 분석 유정문;김소현
  3. 한국기상학회지 v.35 중간 대류권 열적 상태에 관한 위성자료와 모델 재분석 결과 사이의 비교 유정문;박은정;김규명;허창회
  4. 한국기상학회지 v.36 오존전량의 시·공간 변동 및 대기 열적 상태와의 상관 유정문;이혜란
  5. Meteorology Today(5th ed.) Ahrens, C. D.
  6. Documentation of the Research Version of the NMC Medium Range Forecasting Model Precipitation and diffusion processes Caplan, P.
  7. J. Climate v.7 Variability in daily, zonal mean lower-stratospheric temperatures Christy, J. R.;Drouilhet, S. J.
  8. Center for Ocean-Land-Atmosphere Interactions Using the Grid Analysis and Display System(GrADS) Doty, B. E.
  9. Mon. Wea. Rev. v.121 Prognostic evaluation of assumptions used by cumulus parameterization Grell, G. A.
  10. Clim. Change v.30 Satellite and surface temperature data at odds? Hansen, J. E.;Wilson, H.;Sato, M.;Ruedy, R.;Shah, K. P.;Hansen, E.
  11. NATO ASI series Vol. Ⅰ v.42 A Pinatubo climate modeling investigation Hansen, J. E.
  12. J. Geophys. Res. v.92 A fast radiation parameterization for atmospheric circulation models Harshvardhan, Davies, R.;Randall, D. A;Corsetti, T. G.
  13. J. Atmos. Sci. v.45 Design of a nonsingular level 2.5 second-order closure model for the prediction of atmospheric turbulence Helfand, H. M.;Labraga, J. C.
  14. Proc. Ninth Conf. on Numerical Weather Prediction, Amer. Meteor. Soc. Simulation of the planetary boundary layer and turbulence in the GLA GCM Helfand, H.;Fox-Rabinovitz, M.;Takacs, L.;Molod, A.
  15. U.S. Department of Commerce, National Oceanic and Atmospheric Administration, and National Weather Service Intercomparison of the NCEP/NCAR and the NASA/DAO reanalysis(1985-1993), NCEP/Climate Prediction Center Atlas NO. 2 Higgins, R. W.;Yao, Y.;Chelliah, M.;Ebisuzaki, W.;Janowiak, J. E.;Ropelewski, C. F.;Kistler, R. E.
  16. J. Atmos. Sci. v.29 An updated theory for the quasi-biennial oscillation of the tropical stratosphere Holton, J. R.;Lindzen, R. S.
  17. J. Atmos. Sci. v.37 The influence of the equatorial quasi-biennial oscillation on the global circulation at 50 mb Holton, J. R.;Tan, H.-C.
  18. J. Climate v.5 An evaluation of monthly mean MSU and ECMWF global atmospheric temperature for monitoning climate Hurrell, J. W.;Trenberth, K. E.
  19. J. Climate v.11 Difficulties in obtaining reliable temperature trends: Reconciling the surface and satelite microwave sounding unit records Hurrell, J.
  20. Bull. Amer. Meteor. Soc. v.77 The NCEP/NCAR 40-year reanalysis project Kalnay, E.;Kanamitsu, M.;Kistler, R.;Collins, W.;Deaven, D.;Gandin, L.;Iredell, M.;Saha, S.;White, G.;Woollen, J.;Zhu, Y.;Chelliah, M.;Ebisuzaki, W.;Higgins, W.;Janowiak, J.;Mo, K. C.;Ropelewski, C.;Wang, J.;Leetmaa, A.;Reynolds, R.;Jenne, R.;Joseph, D.
  21. Bull. Amer. Meteor. Soc. v.79 Maturity of numerical weather prediction: The medium range Kalnay, E.;Lord, S.;Mcpherson, R.
  22. Bull. Amer. Meteor. Soc. The NCEP/NCAR 40-year reanalysis Kistler, R.;Kalnay, E.;Collins, W.;Saha, S.;White, G.;Woolen, J.;Chelliah, M.;Ebisuzaki, W.;Kanamitsu, M.;Kouski, V.;van del Dool, H.;Jenne, R.;Fiorino, M.
  23. J. Appl. Meteor. v.6 Empirical eigenvectors of sea-level pressure, surface temperature and precipitation complexs over North America Kutzbach, J. E.
  24. J. Atmos. Terr. Phys. v.50 Associations between the 11-year solar cycle, the QBO and the atmosphere Part Ⅰ: The troposphere and stratosphere in northern hemisphere winter Labitzke, K.;van Loon, H.
  25. Geophys. Res. Lett. v.19 Stratospheric temperature increases due to Pinatubo aerosols Labitzke, K.;McCormick, M. P.
  26. J. Atmos. Sci. v.31 A parameterization for the absorption of solar radiation in the earth's atmosphere Lacis, A. A.;Hansen, J. E.
  27. J. Climate v.11 Anomalous atmospheric hydrologic processes associated with ENSO: Mechanism of hydrologic cycle-radiation interaction Lau, K.-M.;Ho, C.-H.;Kang, I.-S.
  28. J. Meteor. Soc. Japan v.66 Anomalously short duration of the easterly wind phase of the QBO at 50 hPa in 1987 and its relationship to an El Ni$\~{n}$o event Maruyama, T.;Tsuneoka, Y.
  29. Mon. Wea. Rev. v.120 Relaxed Arakawa-Schubert: A parameterization of moist convection for general circulation models Moorthi, S.;Suarez, M. J.
  30. J. Meteor. Soc. Japan v.75 Interannual variability of the northern winter stratospheric circulation related to the QBO and the solar cycle Naito, Y.;Hirota, I.
  31. J. Atmos. Sci. v.27 Stratosphere temperature change from Mt. Agung volcanic eruption of 1963 Newell, R. E.
  32. Mon. Wea. Rev. v.110 Sampling errors in the estimation of empirical orthogonal functions North, G. R.;Bell, T. L.;Cahalan, R. F.;Moeng, F. J.
  33. Amer. Meteor. Soc. Implementing a mass flux convective parameterization package for th NMC medium-range forecast model 10th Conf. on Numerical Weather Prediction Pan, H.-L.;Wu, W.-S.
  34. Mon. Wea. Rev. v.120 The National Meteorological Center's spectral statistical-interpolation analysis system Parrish, D.;Derber, J
  35. NASA Tech. Memo. 104606 v.4 Documentation of the Goddard Earth Observing System(GEOS) Data Assimilation System-version 1 Pfaendtner, J.;Bloom, S.;Lamich, D.;Seablom, M.;Sienkiewicz, M.;Stobie, J.;da Silva, A.
  36. J. Atmos. Sci. v.42 On the three-dimensional propagation of stationary waves Plumb, R. A.
  37. J. Geophys. Res. v.99 Coherent variation of monthly mean total ozone and lower stratosphere temperature Randel, W. J.;Cobb, J. B.
  38. J. Climate v.1 A real-time global sea surface temperature analysis Reynolds, R. W.
  39. J. Climate v.7 Improved global sea surface temperature analysis using optimum interpolation Reynolds, R. W.;Smith, T. M.
  40. Proc. of Clim. Diagn. Workshop Automatic mornitoring system for the atmospheric reanalysis project at NMC Saha, S.;Chelliah, M.
  41. Proc. of the 21st annual climate diagnostics and prediction workshop Application of a multi-year DERF experiment toward week 2 and monthly climate prediction Schemm, J. E.;van den Dool, H.;Saha, S.
  42. Bull. Amer. Meteor. Soc. v.74 An assimilated dataset for earth science applications Schubert, S. D.;Rood, R. B.;Pfaendtner, J.
  43. J. Geophys. Res. v.96 The simplified exchange method revisited: An accurate, rapid method for computation of infrared cooling rates and fluxes Schwarzkopf, M.;Fels, S.
  44. J. Geophys. Res. v.103 Comparing upper tropospheric and lower stratosphere temperatures: Microwave Sounding Unit, radiosonde, COSPAR International Reference Atmosphere, and National Center for Environment Prediction/National Center for Atmospheric Research reanalysis monthly-mean climatologies Shah, K. P.;Rind, D.
  45. Science v.247 Precise monitoring of global temperature trends from satellites Spencer, R. W.;Christry, J. R.
  46. J. Climate v.6 Precision lower stratospheric temperature monitoring with the MSU: Technique, validation and results 1979-1991 Spencer, R. W.
  47. Mon. Wea. Rev. v.125 Vertical structure and dominant horizontal waves in the NASA DAO and NCEP reanalyses Straus, D. M.;Yang, Q.
  48. NASA Tech. Memo. 104606 Documentation of theAries/AEOS Dynamical core Version 2 Suarez, M. J.;Takacs, L. L.
  49. Mon. Wea. Rev. v.116 The roles of dry convection, cloud-radiation feedback processes and the influence of recent improvements in the parameterization of convection in the GLA GCM Sud, Y. J.;Molod, A.
  50. NASA Tech. Memo. 104606 v.1 Documentation of the Goddard Earth-Observing System(GEOS) General Circulation Model-Version 1 Takacs, L.;Molod, A.;Wang, T.
  51. Bound.-Layer Meteor. v.37 A simple model of the boundary layer: Sensitivity to surface evaporation Troen, I.;Mahrt, L.
  52. Statistical Methods in the Atmospheric Science Wilks, D. S.
  53. J. Climate v.7 The signature of ENSO in global temperature and precipitation fields derived from the microwave sounding unit Yulaeva, E.;Wallace, J. M.