Planar Optical Waveguide Temperature Sensor Based on Etched Bragg Gratings Considering Nonlinear Thermo-optic Effect

  • Ahn, Kook-Chan (Department of Mechanical Design Engineering, Chinju national University) ;
  • Lee, Sang-Mae (Center for Microelectronic Sensors and MEMS, Department of Electrical & Computer Engineering and Computer Science, University of Cincinnati) ;
  • Jim S. Sirkis (Smart Materials and Structures Research Center, Department of Mechanical Engineering, University of Maryland)
  • Published : 2001.03.01

Abstract

This paper demonstrates the development of optical temperature sensor based on the etched silica-based planar waveguide Bragg grating. Topics include design and fabrication of the etched planar waveguide Bragg grating optical temperature sensor. The typical bandwidth and reflectivity of the surface etched grating has been ∼0.2nm and ∼9%, respectively, at a wavelength of ∼1552nm. The temperature-induced wavelength change is found to be slightly non-linear over ∼200$^{\circ}C$ temperature range. Typically, the temperature-induced fractional Bragg wavelength shift measured in this experiment is 0.0132nm/$^{\circ}C$ with linear curve fit. Theoretical models with nonlinear temperature effect for the grating response based on waveguide and plate deformation theories agree with experiments to within acceptable tolerance.

Keywords

References

  1. Archambault, J. L., Reekie, L. and Russel, P. St. J., 1993, '100% Reflectivity Bragg Reflectors Produced in Optical Fibers by Using Single Excimer Pulses,' Electronic Letters, Vol. 29, pp. 453-454 https://doi.org/10.1049/el:19930303
  2. Chang C. C., Sagrario D., Job. L. and Sirkis J. S., 1994, 'Using Standard Interferometric Sensors for High Temperature Strain Measurements,' SPIE Vol. 2191, pp. 482-486 https://doi.org/10.1117/12.173980
  3. Dils R. R., 1983, Journal of Applied Physics, 84, 1198 https://doi.org/10.1063/1.332199
  4. Ergogan T., Mizrahi V., Lamaire P. J. and Monroe D., 1994, 'Decay of Ultraviolet-Induced Fiber Bragg Gratings,' Journal of Applied Physics, Vol. 76, pp. 73-80 https://doi.org/10.1063/1.357062
  5. Flanders D. C., Kogelnik H., Schmidt R. V. and Shank C. V., 1974, 'Grating Filters for Thin-Film Optical Waveguide,' Applied Physics Letters, Vol. 24, No. 4, pp. 194-196 https://doi.org/10.1063/1.1655150
  6. Harting R, 1975, 'Evaluation of a Capacitive Strain Measuring system for Use to 1500 $^{\circ}C$,' ISA 75251, pp. 289-297
  7. Hill K. O., Fugii Y., Johnson D. C. and Kawasaki B. S., 1978, 'Photosensitivity on Optical Fiber Waveguides: Application to Reflection Filter Fabrication,' Applied Physics Letters, Vol. 32, pp. 647-649 https://doi.org/10.1063/1.89881
  8. Hong, C. S., Shellan, J. B., Livanos, A. C., Yariv, A. and Katzir, A., 1974, ' Broad-Band Grating Filters for Thin-Film Optical Waveguide,' Applied Physics Letters, Vol. 31, No. 4, pp. 276-278 https://doi.org/10.1063/1.89660
  9. Hudson L. D., 1989, 'Recient Experiences With Elevated-Temperature Foil Strain Gages With Application to Thin-Gage Materials,' Proc. 6th Annual Conf. On Hostile Environments and High Temperature Measurements, Society for Experimental Mechanics, pp. 68-81
  10. Izawa, T., More, H., Murakami, Y. and Shimizu, N., 1981, 'Deposited Silica Waveguide for Integrated Optical Circuits,' Applied Physics Letters, Vol. 38, No. 7, pp.483-485 https://doi.org/10.1063/1.92426
  11. Kelly A., 1973, Strong Solids, 2nd Ed. Oxford England: Clarendon
  12. Lee C. E. and Talor H. F., 1991, IEEE Journal of Lightwave Technology, 9, 129 https://doi.org/10.1109/50.64932
  13. Lee H. J., Henry C. H., Kazarinov R. F. and Orlowsky K. J., 1987, 'Low Loss Bragg Reflection on $SiO_2-Si_3N_4-SiO_2$ Rib Waveguides,' Applied Optics, Vol. 26, No. 13, pp. 2618-2620
  14. Lei J. F., Okimura H. and Brittain J. O., 1989, 'Evaluation of Some Thin Film Transition Metal Compounds for High Temperature Resistance Strain Gauge Application,' Materials Science Engineering, Vol. A111, pp. 145-154 https://doi.org/10.1016/0921-5093(89)90206-2
  15. Malitson I. H., 1965,' Interspecimen Comparison of the Refractive Index of Fused Silica,' J. Opt. Soc. America, Vol. 55, No. 10, pp. 1205-1210
  16. Miay, P., Beage, P., Douay, M., Taunay, T., Sie ,W. X., Martinelli, G., Bayon, H. F., Poignant, H. and Devevaque, E., 1995, 'Bragg Grating Photoinscription Within Various Types of Fibers and Galsses,' Proceedings of Photosensitivity and Quadratic Nonlinearity in Glass Waveguides: Fundamentals and Applications, OSA Technical Digest, Vol. 22, pp. 66-69
  17. Moreau, W. M., 1988, 'Semiconductor Lithography,' Principles, Practices, and Materials, New York: Plenum Press, pp. 646-650
  18. Morey, W. W., Meltz, G. and Glenn, W. H., 1989, 'Fiber Optic Bragg Grating Sensors,' Fiber Optic and Laser Sensor VII, SPIE Vol. 1169, pp. 98-107
  19. Noltingk, B. E., 1974, 'Measuring Static Strains at High Temperatures,' Experimental Mechanics, Vol. 15, No. 10, pp. 420-423 https://doi.org/10.1007/BF02324948
  20. Norris E. B. and Yeakley L. M., 1976,'Development High-Temperature Capacitance Strain Gages,' ISA National Technical Information Service, PB 257, January
  21. Okada, Y. and Tokumaru, Y., 1984, J. Applied Physics, Vol. 56, No. 2, pp. 314-320 https://doi.org/10.1063/1.333965
  22. Petersen, K. E., 1982, Proceeding of IEEE, Vol. 70, pp. 420-???
  23. Poulsen C. V., 1995, 'Thermal Stability of Direct UV-Written Channel Waveguides,' Proceedings of Photosensitivity and Quadratic Nonlinearity in Glass Waveguides: Fundamentals and Applications, OSA Technical Digest, Vol. 22, pp. 100-103
  24. Schmidt R. V., Flanders D. C., Shank C. V. and Standley R. D., 1974, 'Narrow-Band Grating Filters for Thin-Film Optical Waveguide,' Applied Physics Letters, Vol. 25, No. 11, pp. 651-652 https://doi.org/10.1063/1.1655346
  25. Stange W. A., 1983, 'Advanced Techniques for Measurement of Strain and Temperature in a Turbine Engine,' AIAA/SAE/ASME 19th Jet Propulsion Conference, Seattle, WA, AIAA-83-1296
  26. Suhara T. and Nishihara H., 1986, 'Integrated Optics Component and Devices Using Periodic Structures,' IEEE Journal of Quantum Electronics, Vol. 22, No. 6, pp. 845-867 https://doi.org/10.1109/JQE.1986.1073051
  27. Takahashi S. and Shibata S., 1979, 'Thermal Variation of Attenuation for Optical Fibers,' Journal of Non-Crystalline Solids, Vol. 30, pp. 359-370 https://doi.org/10.1016/0022-3093(79)90173-X
  28. Tsai, T. E., Griebele, E. J. and Griscom, D. L., 1993, 'Thermal Stability of Photoinduced Grating and Parametric Centers in Ge- and GE/P-Doped Silica Optical Fibers,' Optics Letters, Vol. 18, pp. 935-937
  29. Veselka, J. J.and Korothy, S. K., 1986, 'Optimization of $Ti:LiNbO_3$ Optical Waveguides and Directional Couplers Switches for 1.56 Micrometer Wavelength,' IEEE Journal of Quantum Electronics, Vol. 22, pp. 930-938
  30. Wang A., Wang G. Z., Gollapudi S., May R. G., Murphy K. A. and Claus R. O., 1992, 'Advances in Sapphire Optical Fiber Sensors,' Proceedings of. Fiber Optic Smart Structures and Skins V, SPIE, Vol. 1798, pp. 56-65 https://doi.org/10.1117/12.141335
  31. Waxler, M. and Cleek, G. W., 1973, 'The Effect of Temperature and Pressure on the Refractive Index of Some Sxide Glasses,' J. Res. Nat. Bureau of Stan., Vol. 77A, No. 6, pp. 755-763
  32. Wu T., Ma L. C. and Zhao L. B., 1981, 'Development of Temperature-Compensated Resistance Strain Gages for Use to $700 ^{\circ}C$,' Experimental Mechanics, Vol. 21, No. 3, pp. 117-123 https://doi.org/10.1007/BF02326368
  33. Yariv A., 1973, 'Coupled-Mode Theory for Guided-Wave Optics,' IEEE Journal of Quantum Electronics, Vol. 9, pp. 919-933 https://doi.org/10.1109/JQE.1973.1077767