Approximate Yield Criterion for Voided Anisotropic Ductile Materials

  • Kim, Youngsuk (School of Mechanical Engineering, Kyungpook National University) ;
  • Sungyeun Won (Graduate School Kyungpook National University) ;
  • Kim, Dogsoo (Graduate School Kyungpook National University) ;
  • Hyunsung Son (Graduate School Kyungpook National University)
  • Published : 2001.10.01

Abstract

As most fractures of ductile materials in metal forming processes occurred due to the results of evolution of internal damage - void nucleation, growth and coalescence. In this paper, an approximate yield criterion for voided (porous) anisotropic ductile materials is developed. The proposed approximate yield function is based on Gurson's yield function in conjunction with the Hosford's non-quadratic anisotropic yield criterion in order to consider the characteristic of anisotropic properties of matrix material. The associated flow rules are presented and the laws governing void growth with strain are derided. Using the proposed model void growth of an anisotropic sheet under biaxial tensile loading and its effect on sheet metal formability are investigated. The yield surface of voided anisotropic sheet and void growth with strain are predicted and compared with the experimental results.

Keywords

References

  1. Barlat, F. and Lian, J., 1989, 'Plastic Behavior and Stretchability of Sheet Metals, Part I : A Yield Function for Orthotropic Sheets Under Plane Stress Conditions,' Int. J. of Plasticity, Vol. 5, pp. 51-66 https://doi.org/10.1016/0749-6419(89)90019-3
  2. Cristian, V., Hosford, F., 1983, 'Yield Loci of Anisotropic Sheet Metals,' Int. J. Mech. Sci., Vol. 25(12), pp. 889-915 https://doi.org/10.1016/0020-7403(83)90020-6
  3. Doege, E., Bagaviev, A. and Dohrmann, H., 1997, 'Formability Analysis Based on the Anisotropically Extended Gurson Model,' Advanced Methods in Materials Processing Defects, Ed. M. Predeleanu and P. Gilormini, pp. 281-288
  4. Goodwin, G. M., 1968 'Application of Strain Analysis to Sheet Metal Forming Problems in the Press Shop,' SAE Paper, No. 680093
  5. Graf, A. and Hosford, W. F., 1993, 'Effect of Changing Strain Paths on Forming Limit Diagrams of Al 2008-T4,' Meta. Trans., Vol. 24A, p. 2503
  6. Gurson, A. L., 1977, 'Continuum Theory of Ductile Rupture by Void Nucleation and Growth : Part I - Yield Criteria and Flow Rules for Porous Ductile Materials,' J. Eng. Mater. Tech. ASME, Vol. 99, pp. 2-15
  7. Hill, R., 1948, 'A Theory of the Yielding and Plastic Flow of Anisotropic Metals,' Proc. R. Soc. London, pp. 281-297
  8. Hill, R., 1950, The Mathematical Theory of Plasticity, Oxford University Press, London
  9. Hill, R., 1979, 'Theoretical Plasticity of Textured Aggregates,' Math. Proc. Camb. Phil. Soc., Vol. 85, pp. 179-191
  10. Hosford, W. F., 1979, 'On Yield Loci of Anisotropic Cubic Metals,' Proc. 7th North Am. Metalworking Conf., SME, Dearborn, MI, pp. 191-196
  11. Hosford, W.F., 1988, 'Limitations of Non -Quadratic Anisotropic Yield Criteria and Their Use in Analysis of Sheet Forming, In: Proc. of the 15th IDDRG Congr. A.S.M., Dearborn, MI, pp. 163-170
  12. Jalinier, J., 1978, Endommagement, Instabilite Plastique et Courbes Limites de Formage. Docteur-Ingenier Thesis, L'institut National Polytechnique de Lorraine, France
  13. Keeler, S. P., 1965 'Determination of Forming Limits in Automotive Stampings,' SAE paper, No. 650535
  14. Kuwabara, T., IKeda, S. and Kuroda, K., 1998, 'Measurement and Analysis of Differential Work Hardening in Cold-Rolled Steel Sheet Under Biaxial Tension,' J. Mater. Proc. Tech., Vol. 80, pp. 517-523 https://doi.org/10.1016/S0924-0136(98)00155-1
  15. Lee, U., 1998, 'A Continuum Mechanics for Damaged Anisotropic Solids,' KSME Int. J., Vol. 12, No. 3, pp. 405-413
  16. Liao, K.C., Pan, J. and Tang, S.C., 1997, 'Approximate Yield Criteria for Anisotropic Porous Ductile Sheet Metals,' Mechanics of Materials, Vol. 26, pp. 213-226 https://doi.org/10.1016/S0167-6636(97)00033-1
  17. Luo, Z.J., Ji, W.H., Guo, N.C., Xu, X.Y., Xu, Q.S., Zhang, Y.Y., 1992, 'A Ductile-Damage Model and Its Application to Metal-Forming Processes,' J. Mat. Proc. Tech. Vol. 30, pp. 31-43 https://doi.org/10.1016/0924-0136(92)90037-S
  18. Marciniak, Z. and Kuczynski, K., 1967, 'Limit Strains in the Process of Stretch-Forming Sheet Metal,' Int. J. Mech. Sci. Vol. 9, pp. 609-620
  19. Parmar, A. and Mellor, P.B., 1980, 'Growth of Voids in Biaxial Stress Fields,' Int. J. Mech. Sci., Vol. 22, pp. 133-150 https://doi.org/10.1016/0020-7403(80)90063-6
  20. Storen, S. and Rice, J., 1975, 'Localized Necking in Thin Sheets,' J. Mech. Phys. Solids, Vol. 23, pp. 421-441 https://doi.org/10.1016/0022-5096(75)90004-6
  21. Tvergaard, V., 1987, 'Effect of Yield Surfaces Curvatures and Void Nucleation on Plastic Flow Localization,' J. Mech. Phys. Solids, Vol. 35 (1), pp. 43-60 https://doi.org/10.1016/0022-5096(87)90027-5
  22. Tvergaard, V., 1991, 'Mechanical Modelling of Ductile Fracture,' Mechanica, Vol. 26, pp. 11-16 https://doi.org/10.1007/BF00517719
  23. Zhao, L., Sowerby, R. and Sklad, M.P., 1996, 'A Theoretical and Experimental Investigation of Limit Strains in Sheet Metal Forming,' Int. J. Mech. Sci., Vol. 38, pp. 1307-1317 https://doi.org/10.1016/0020-7403(96)00014-8