Immunological Characterization and Localization of the Alcohol-dehydrogenase in Streptococcus pneumoniae

폐렴구균 알코올탈수소효소의 세포 특이성 및 세포내 분포

  • Published : 2001.09.01

Abstract

Heat shock proteins serve as chaperone by preventing the aggregation of denatured proteins and promote survival of pathogens in harsh environments. In bacteria, ethanol shock induced the major chaperone GroEL and DnaK, but in Streptococcus pneumoniae, it induced neither GroEL nor DnaK but alcohol dehydrogenase (ADH). In this study, ADH gene encoding a 104-kDa (p104) protein was identified and characterized. The deduced amino acid sequence of pneumococcal ADH shows homology with other members of the ADH family, and particularly with Entamoeba histolytica ADH2 and E. coli ADH. S. pneumoniae adh is composed of 883 amino acids and its estimated isoelectric point is 6.09. Although ADH is conserved between S. pneumoniae and E. coli, immunoblot analysis employing antisera raised against pneumococcus ADH demonstrated no cross-reactivity with ADH analog in Eschericha coli, Staphylococcus aureus and human HeLa cells. Also secretion of ADH was demonstrated by subcellular fractionation and immunoblot analysis of proteins. These results suggest that S. pneumoniae ADH could be a highly feasible candidate for both diagnostic marker and vaccine.

열충격 단백질(heat shock protein: HSP)은 변성된 단백질의 응집을 방지하여 가혹한환경에서 병원균의 생존을 증가시킨다. 세균에 알코을 stress를 가하면 다량의 DnaK와 GronEL이 유도되지만 폐렴구균에서는 DnaK와 GroEL이 전혀 유도되지 않는 대신 알코올탈수소효소(alcohol dehydrogenase : ADH)가 유도되었다. 이런 특성은 폐렴구균 ADH가 HSP처럼 chaperone 기능을 수행라고 있을 가능성을 제시하고 있으므로 본 연구에서는 일차적으로 ADH 유전자를 확인하고 ADH 의 면역특성 및 세포내 분포를 측정하였다. 폐렴구균 ADH는 이질아메바 ADH2 및 대장균 ADH 와 높은 유사성을 나타냈으며 883 개의 아미노산으로 구성된 등전점 6.09의 단백질로 추정된다. 그러나 폐렴구균 ADH와 유사성이 높은 대장균, 유산균 및 황색포도상구균의 용해액을 폐렴구균 ADH 항체와 immunoblot을 실시하였을 때 전혀 반응하지 않았다. 또한 세포질, membrane, periplasm에 있는 단백질 분획 및 폐렴구균 배양 상등액을 ADH 항체와 immune blot을 실시하였을 때 ADH 는 열충격에 관계없이 세포 밖으로 분비되는 단백질임을 확인하였다. 이런 결과는 폐렴구균 ADH가 진단용항원 및 백신으로 개발될 수 있는 가능성을 제시하고 있다.

Keywords

References

  1. J. Bacteriol. v.174 Immunocytochemical localization of glycolytic and fermentative enzymes in Zymomonas mobilis Aldrich, H.C.;L. McDowell;M.F. Barbosa;L.P. Yomano;R.K. Scopes;L.O. Ingram
  2. Microbiol. Rev. v.59 Streptococcus pneumoniae: virulence factors, pathogenesis, and vaccines Alonso De Velasco, E.;A.F. Verheul;J.Verhoef;H. Snippe
  3. J. Bacteriol. v.173 Gel electrophoretic analysis of Zymomonas mobilis glycolytic and fermentative enzymes: identification of alcohol dehydrogenase II as a stress protein An, H.;R.K. Scopes;M. Rodriguez;K.F. Keshav;L.O. Ingram
  4. J. Bacteriol. v.180 Cloning of the Lactococcus lactis adhE gene, encoding a multifunctional alcohol dehydrogenase, by complementation of a fermentative mutant of Escherichia coli Arnau, J.;F. Jorgensen;S.M. Madsen;A. Vrang;H. Israelsen
  5. Microorganisms in our world Atlas, R.M.
  6. J. Mol. Biol. v.282 The refined crystal structure of Drosophila lebanonensise at l.9 Å resolution Benach, J.;S. Atrian;R. Gonzalez-Duarte;R. Ladenstein
  7. Microbiology v.143 no.Pt 3 Specific and general stress proteins in Bacillus subtilis- a two-deimensional protein electrophoresis study Bernhardt, J.;U. Volker;A. Volker;H. Antelmann;R. Schmid;H. Mach;M. Hecker
  8. Int. J. Food Microbiol. v.14 Heat shock induces thermotolerance and inhibition of lysis in a lysogenic strain of Lactococcus lactis Boutibonnes, P.;B. Gillot;Y. Auffray;B. Thammavongs
  9. Antonie Van Leeuwenhoek v.64 Characterization of the heat shock response in Enterococcus faecalis Boutibonnes, P.;J.C. Giard;A. Hartke;B. Thammavongs;Y. Auffiray
  10. Science v.248 Induction of Salmonella stress proteins upon infection of macrophages Buchimeier, N.A.;F. Heffron
  11. Mol. Microbiol. v.37 Regulation of growth inhibition at high temperature, autolysis, transformation and adherence in Streptococcus pneumoniae by clpC Charpentier, E.;R. Novak;E. Tuomanen
  12. Microbiol. Immunol. v.43 Limited stress response in Streptococcus pneumoniae Choi, I.H.;J.H. Shim;S.W. Kim;S.N. Kim;S.N. Pyo;D.K. Rhee
  13. J. Bacteriol. v.57 Heat shock protein: Molecular chaperones of protein biogenesis Craig, E.A.;B.D. Gambill;R.J. Nelson
  14. Proc. Natl. Acad. Sci. v.91 Fundamental molecular differences between alcohol dehydrogenase classes Danielsson, O.;S. Atrian;T. Luque;L. Hjelmqvist;D.R. Gonzalez;H. Jornvall
  15. Appl. Environ. Microbiol. v.58 Localization of methanol dehydrogenase in two strains of methylotrophic bacteria detected by immunogold labeling Fassel, T.A.;L.A. Buchholz;M.L. Collins;C.C. Remsen
  16. J. Infect. Dis. v.173 Surface localization, regulation, and biologic properties of the 96-kDa alcohol/aldehyde dehydrogenase (EhADH2) of pathogenic Entamoeba histolytica Flores, B.M.;S.L. Stanley;T.S. Yong;M. Ali;W. Yang;D.L. Diedrich;B.E. Torian
  17. Proc. Natl. Acad. Sci. v.88 Molecular evolution of alcohol dehydrogenase l in member of the grass family Gaut. B.S.;M.T. Clegg
  18. Annu. Rev. Cell. Biol. v.9 Role of the major heat shock proteins as molecular chaperones Georgopoulos, C.;W.J. Welch
  19. Amer. Soc. Microbiol. Function and regulation of the heat shock proteins;E. coli and Salmonella typhimurium: Cellular and molecular biology Gross, C.A.;F.C. Neidhardt;R. Curtiss III;J.L. Ingraham;E.C.C. Lin;K.B. Low;B. Megasanik;W.S. Reznikoff;M. Riley;M. Schaechter;H.E. Umbarger(ed.)
  20. Infect. Immun. v.65 Brief heat shock treatment induces a long-lasting alteration in the glycolipid receptor binding specificity and growth rate of Haemophilus influenzae Hartmann, E.;C. Lingwood
  21. Ann. Rev. Biochem. v.62 Molecular chaperone functions of heat shock proteins Hendrick, J.P.;F.U. Hartl
  22. Eur. J. Biochem. v.120 Properties of sorbitol dehydrogenase and characterization of a reactive cystein residue reveal unexpected similarities to alcohol dehydrogenase Jeffery, J.;L. Cummins;M. Carlqust;H. Jornvall
  23. Zinsser Microbiology Joklik, W.K.;H.P. Willett;D.B. Amos;C.M. Wilfert
  24. J. Bacteriol. v.156 Localization of the major dehydrogenases in two methylotrophs by radiochemical labeling Kasprzak, A.A.;D.J. Steenkamp
  25. Immunol. Rev. v.121 Heat shock protein 60: implications for pathogenesis of and protection against bacterial infection Kaufmann, S.H.E.;B. Schoel;J.D.A.V. Embden;T. Koga;A. Wand-Wurttenberger;M.E . Munk;U. Steinhoff
  26. Heat shock proteins as antigens in immunity against infection and self;The Biology of Heat Shock Proteins and Molecular Chaperones Kaufmann, S.H.E.;B. Schoel;R.I. Morimoto;A. Tissieres;C. Georgopoulos(ed.)
  27. FEBS Lett. v.281 Pyruvate-formatelyase-deactivase and acetyl-CoA reductase activities of Escherichia coli reside on a polymeric protein particle encoded by adhE Kessler, D.;I. Leibrecht;J. Knappe
  28. FEMS Microbiol. Lett. v.161 Molecular cloning, expression, and characterization of dnaK in Streptococcus pneumoniae Kim, S.W.;I.H. Choi;S.N. Kim;Y.H. Kim;S.N. Pyo;D.K. Rhee
  29. J. Mol. Biol. v.278 Crystal structure cofactor-binding and cofactor specificity of the ADHs of Clostridium beijerinckii and Thermoanaerobacter brockii Korkhin, Y.;A.J. Kalb;M. Peretz;O. Bogin;Y. Burstein;F. Frolow
  30. Infect. Immun. v.61 Phenotypic modulation by Legionella pneumophila upon infection of macrophages Kwaik, Y.A.;B.I. Eisenstein;N.C. Engleberg
  31. Insect. Biochem. Mol. Biol. v.23 Aldehyde dehydrogenase (ALDH) activity in Drosophila melanogaster adults: evidence for cytosolic localization Leal, J.F.;M. Barbancho
  32. Infect. Immun. v.63 Protein synthesis in Brucella abortus induced during macrophage infection Lin, J.;T.A. Ficht
  33. Mol. Microbiol. v.6 Ethanol-induced and glucose-insensitive alcohol dehydrogenase activity in the yeast Kluyveromyces lactis Mazzoni, C.;M. Saliola;C. Falcone
  34. J. Bacteriol. v.174 Environmental signals controlling expression of virulence gene determinants in bacteria Mekalanos, J.J.
  35. Eur. J. Biochem. v.154 The two alcohol dehydrogenase of Zymomonas mobilis. Purification by differencial dye ligand chromatography, molecular charactrization and physiological roles Neale, A.D.;R.K. Copes;J.M. Kelley;R.E.H. Wettenhall
  36. Annu. Rev. Genet. v.27 The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins Parsell, D.A.;S. Lindquist
  37. Infect. Immun. v.65 Alterations in levels of DnaK and GroEL results in diminished survival and adherance of stressed Parsons, L.M.;R.J. Limberger;M. Shayegani
  38. Antonie Van Leeuwenhoek v.58 Basic features of the staphylococcal heat shock response Qoronfleh, M.W.;U.N. Streips;B.J. Wilkinson
  39. Crit. Rev. Microbiol. v.20 Molecular characterization of microbial alcohol dehydrogenase Reid, M.F.;C.A. Fewson
  40. Bacterial pathogenesis: A Molecular Approach Salyers, A.A.;D.D. Whitt
  41. J. Biol. Chem. v.269 The complete structure of human class IV alcohol dehydrogenase (retinol dehydrogenase) determined from the ADH7 gene Satre, M.A.;K.M. Zgombic;G. Duester
  42. Mol. Gen. Genet. v.232 Evolution of the alcohol dehydrogenase (ADH) genes in yeast : characterization of a fourth ADH in Kluyoeromyces lactis Shain, D.H.;C. Salvadore;C.L. Denis
  43. Science v.265 Pneumococcal disease: Prospects for a new generation of vaccines Siber, G.R.
  44. J. Mol. Evol. v.34 Progressive sequence alignment and molecular evolution of the Zn-containing alcohol dehydrogenase family Sun, H.W.;B.V Plapp
  45. J. Bacteriol. v.175 Induction by ethanol of alcohol dehydrogenase activity in Acetobacter pasteurianus Takemura, H.;K. Kondo;S. Horinouchi;T. Beppu
  46. Sci. Am. v.268 Breaching the blood-brain barrier Tuomanen, E.
  47. Curr. Opin. Microbiol. v.2 Molecular and cellular biology of pneumococcal infection Tuomanen, E.
  48. FEBS Lett. v.295 Tomato alcohol dehydrogenase. expression during fruit ripening and under hypoxic conditions Van, D.S.D.;P.R. Rodrigues;J. Gielen;M.M. Van
  49. J. Bacteriol. v.169 Differential induction of heat shock, S0S, and oxidation stress regulons and accumulation of nucleotides in Escherichia coli VanBogelen, R.A.;R.M. Kelley;F.C. Neidhardt
  50. J. Bacteriol. v.165 Localization of competence-induced proteins in Streptococcus pneumoniae Vijayakumar, M.N.;D.A. Morrison
  51. Arch. Microbiol. v.128 Subcellular localization of long-chain alcohol dehydrogenase and aldehyde dehydrogenase in n-alkane-grown Candida tropicalis Yamada, T.;H. Nawa;S. Kawamoto;A. Tanaka;S. Fukui
  52. Infect. Immun. v.65 The Yersinia enterocolitica GsrA stress protein, involved in intracellular survival, is induced by macrophage phagocytosis Yamamoto, T.;T. Hanawa;S. Ogata;S. Kamiya
  53. J. Mol. Biol. v.265 Structure of human chi chi alcohol dehydrogenase : a glutathione-dependent formaldehyde dehydrogenase Yang, Z.N.;W.F. Bosron;T.D. Hurley
  54. Proc. Natl. Acad. Sci. v.88 A human alcohol dehydrogenase gene (ADH6) encoding an additional class of isozyme Yasunami, M.;C.S. Chen.;A. Yoshida