Preparation of $TiO_2$ Coated Coal Fly Ash and Photocatalytic Characterization

$TiO_2$ 피복 석탄회의 제조와 광촉매 특성에 관한 연구

  • Yu, Yeon-Tae (Minerals and Materials Processing Division, Korea Institute of GeoScience and Mineral resource) ;
  • Choi, Young-Yoon (Minerals and Materials Processing Division, Korea Institute of GeoScience and Mineral resource) ;
  • Kim, Byoung-Gyu (Minerals and Materials Processing Division, Korea Institute of GeoScience and Mineral resource) ;
  • Lee, Hee-Jung (Department of Material Science & Engineering, Kongju National Univ.) ;
  • Lee, Byong-Taek (Department of Material Science & Engineering, Kongju National Univ.)
  • 유연태 (한국지질자원연구원 자원활용연구부) ;
  • 최영윤 (한국지질자원연구원 자원활용연구부) ;
  • 김병규 (한국지질자원연구원 자원활용연구부) ;
  • 이희정 (공주대학교 재료공학과) ;
  • 이병택 (공주대학교 재료공학과)
  • Published : 2001.08.01

Abstract

$TiO_2$ coated coal fly ash has been prepared in order to develop the low price $TiO_2$ photocatalyst and spread out its utilizing field. $TiO_2$ particles is coated on the surface of coal fly ash by precipitation method. In this method, $TiCl_4$ aqueous solution was used as a titanium stock solution and $NH_4HCO_3$ was used as a precipitant. The titanium hydroxide precipitated on the surface of coal fly ash in these neutralizing reaction process was oxidized by heat treatment in temperature ranges of $300~700^{\circ}C$. The crystal structure of the generated titanium dioxide showed anatase type. The crystal size of titanium dioxide increased with raising the temperature of heat treatment, but the removal ability of NO gas decreased. When the titanium dioxide was heated at temperature ranges of $300~ 400^{\circ}C$ for 2 hours, the crystal size of titanium dioxide appeared about 9nm, and the removal rate of NO gas showed 85~ 92%. The whiteness of $TiO_2$ coated coal fly ash increased with raising the coating rate of titanium dioxide and the temperature of heat treatment.

저가형 $TiO_2$ 광촉매의 개발과 광촉매의 활용범위를 확대하고자, 석탄회를 지지체로 이용하여 $TiO_2$ 광촉매를 제조하였다. 석탄회 표면에 $TiO_2$ 입자의 피복은 침전법에 의해서 수행되었다. $TiO_2$의 공급원으로는$ TiCl_4$수용액과 침전제로는 $NH_4$$HCO_3$가 사용되었다. 이들의 중화반응에 의해 석탄회 표면에 생성되는 Ti(OH)4$_4$$300~700^{\circ}C$의 열처리 과정에서 산화되었다. 여기서 생성된 $TiO_2$의 결정구조는 anatase형을 나타내었다. 피복 $TiO_2$의 결정립 크기는 열처리 온도의 상승에 따라 증가하였으나, NO가스의 제거능은 감소하는 경향을 보였다. $TiO_2$피복 석탄회를 $300~400^{\circ}C$의 온도 범위에서 2시간 동안 열처리할 경우, $TiO_2$의 결정립 크기는 약 9nm이었고, 질소산화물 제거율은 85~92%이었다. 또한, $TiO_2$피복 석탄회의 백색도는 $TiO_2$의 피복량이 증가할수록 열처리 온도가 증가할수록 상승하는 경향을 나타내었다.

Keywords

References

  1. K. Tanaka, M. F. V. Capule and T. Hisanaga,, Chemistry Letters, 187(1, 2), 273, (1991)
  2. T. Torimoto, Y. Okawa, N. Takeda and H. Yoneyama, Journal of Photochemistry and Photobiology A : Chemistry, 103, 153, (1997)
  3. H. Matsubara, M. Takada, S. Koyama, K. Hashimoto and A. Fujishima, Chemistry Letters, 767, (1995) https://doi.org/10.1246/cl.1995.767
  4. H. Kominami, S. Murakami, Y. Kera, B. Ohtani, Catalysis Letters, 56, 125, (1998) https://doi.org/10.1023/A:1019052911437
  5. N. Xu, Z. Shi, Y. Fan, J. Dong, J. Shi and M. Z. C. Hu, Ind. Eng. Chem. Res., 38, 375, (1999) https://doi.org/10.1021/ie980378u
  6. T. Koji;M. Sadao, and I. Takashi, 'HIKARI SHOKUBAI NO SEKAI, pp. 112, KOGYO CHOSA KAI (1998)
  7. Hyun-ki Shin, Hern Kim, Journal of The Korean Association of Crystal Growth, 9, 5493, (1999)
  8. Tai-Kyu Lee, Kwang-Bok Kim, Dong-Hyung Kim and Seong-Won Lee, Kor. J. Mater. Res, 6(3), 3282, (1996)
  9. ?L. Cao, Z. Gao, S. L. Suib, T. N. Obee, S. O. Hay and J. D. Freihaut, Journal of Catalysis, 196, 253, (2000) https://doi.org/10.1006/jcat.2000.3050
  10. I. Sopyan, M. Watanabe, S. Murasawa, K. Hanshimoto andA. Fujishima, Chemistry Letters, 69 (1996)
  11. H. Kominami, J. kato, M. Kohmo, Y. Kera and B. Ohtani, Chemistry Letters, 1051 (1996)