Intercalation of Polycarbonate/Montmorillonite Nanocomposites

폴리카보네이트와 몬모릴로나이트 나노복합체의 층간삽입

  • Published : 2001.11.01

Abstract

Polycarbonate(PC)/montmorillonite (MMT) nanocomposites were prepared by solution and melt mixing methods. A d-spacing of the nanocomposites was measured by an X-ray diffractometer. Neat montmorillonite (MMT-Na) and MMTs modified by dodecyl ammonium (MMT-DA) or dimethyl hydrogenated tallow 2-ethylhexyl ammonium (MMT-25A) were used. The d-spacing value of PC/MMT-25A and PC/MMT-DA was higher than that of PC/MMT-Na. The d-spacing increased from around 12 to $37AA$ depending on the mixing method. PC was more readily introduced to the gallery of MMT as the molecular weight of PC reduced and the mixing time increased. PC/MMT-25A showed higher thermal stability by thermogravimetric analysis (TGA) than PC/MMT-DA and PC/MMT-Na.

폴리카보네이트 (PC)와 몬모릴로나이트 (montmorillonite, MMT)의 나노복합체를 용액 및 용융 혼합 방법으로 층간삽입시켜 제조하여 X-ray 실험으로 MMT의 층간간격 변화를 조사하였다. MMT로는 $Na^+$를 양이온으로 갖는 순수 MMT (MMT-Na)와 도데실암모늄 (MMT-DA) 및 dimethyl hydrogenated tallow 2-ethylhexyl ammonium으로 개질된 MMT (MMT-25A)를 사용하였다. PC/MMT-25A와 PC/MMT-DA가 PC/MMT-Na보다 층간거리의 증가폭이 컸으며, 혼합방법에 따라 최대 $37AA$까지 층간간격이 증가하였다. 또 PC의 분자량이 작을수록, 혼합시간이 증가할수록 삽입이 잘 일어났다. 열중량분석법 (TGA)으로 측정한 열안정성은 PC/MMT-25A가 PC/MMT-Na와 순수한 PC보다 우수함을 나타내었다.

Keywords

References

  1. Chem. Mater. v.8 no.1584 H. Shi;T. Lan;T.J. Pinnavaia
  2. SAMPE Journal v.33 no.4 J.W. Gilman;T. Kashiwagi
  3. Macromolecules v.30 no.4097 R. Krishnamoorti;E.P. Giannelis
  4. J. Polym. Sci. Part A : Polym. Chem. v.31 no.983 Y. Kojima;A. Usuki;M. Kawasumi;A. Okada;T. Kurauchi;O. Kamigaito
  5. J. Polym. Sci. Part B : Polym. Phys. v.32 no.625 Y. Kojima;A. Usuki;M. Kawasumi;A. Okada;T. Kurauchi;O. Kamigaito;K. Kaji
  6. Polymer(Korea) v.22 no.328 J.G. Ryu;G.R. Park;S.G. Lyu;J.H. Rhew;G.S. Sur
  7. MS Thesis, Inha Univ. L.W. Jang;D.J. Lee
  8. Chem. Mater. v.5 no.1064 P.B. Messersmith;E.P. Giannelis
  9. Polymer(Korea) v.23 no.456 H.K. Choi;Y.H. Park;S.G. Lyu;B.S. Kim;G.S. Sur
  10. Macromolecules v.28 no.8080 R.A. Vaia;K.D. Jandt;E.J. Kramer;E.P. Giannelis
  11. Macromolecules v.30 no.7990 R.A. Vaia;E.P. Giannelis
  12. J. Polym. Sci. Part B : Polym. Phys. v.35 no.59 R.A. Vaia;B.B. Sauer;O.K. Tse;E.P. Giannelis
  13. J. Appl. Polym. Sci. v.63 no.137 A. Usuki;A. Kato;A. Okada;T. Kurauchi
  14. Chem. Mater. v.5 no.1694 R.A. Vaia;H. Ishii;E.P. Giannelis
  15. Mater. Lett. v.18 no.97 A.S. Moet;A. Akelah
  16. J. Appl. Polym. Sci. v.61 no.1117 D.C. Lee;L.W. Jang
  17. Chem. Mater. v.6 no.573 T. Lan;P.D. Kaviratna;T.J. Pinnavaia
  18. J. Polym. Sci. Part A :Polym. Chem. v.35 no.2289 A. Yano;A. Usuki;A. Okada
  19. Macromolecules v.33 no.2000 X. Huang;S. Lewis;W.J. Brittain;R.A. Vaia
  20. Macromol. Rapid Commun. v.22 no.320 H.J. Choi;S.G. Kim;Y.H. Hyun;M.S. Jhon
  21. Polymer Handbook M. Kurata;Y. Tsunashima;J. Brandrup(ed);E.H. Immergut(eds.)
  22. Chem. Mater. v.6 no.1017 R.A. Vaia;R.K. Teukolsky;E.P. Giannelis
  23. Polymer Handbook E.A. Grulke;J.Brandrup(ed);E.H. Immergut(eds.)