Preparation and Characterization of Polypyrrole Electroactive Actuators

Polypyrrole를 이용한 전기활성 구동기의 제조 및 특성

  • 박정태 (기능성고분자 신소재 연구센터, 성균관대학교 응용화학부) ;
  • 최혁렬 (성균관대학교 기계공학부) ;
  • 김훈모 (성균관대학교 기계공학부) ;
  • 전재욱 (성균관대학교 전기전자컴퓨터공학부) ;
  • 남재도 (기능성고분자 신소재 연구센터, 성균관대학교 응용화학부)
  • Published : 2001.11.01

Abstract

In this study, PPy/gold/mylar type electroactive bi-layer actuator was prepared by the electrochemical polymerization of pyrrole onto the gold/mylar film and the actuation characteristics were studied using bending beam method. Conducting polymer-based actuators undergo volumetric changes due to the movement of dopant ions into the film during the electrical oxidation process. The bilayer films exhibited different actuation characteristics depending on dopant ion size. It was observed that the relatively small dopant ion (i.e. toluene sulfonate) moved into the PPy film at oxidized state, so volume expanded to result in bending motion. In case of the film having large dopant ion (i.e. dodecylbenzenesulfonate), volume expansion was observed at reduced state. This is due to the incorporation of $Na^+$ counterion with water molecules, while the large dopant ion was fixed in the film due to the limited mobility during tile redox process.

본 연구에서는 폴리피를 (PPy)/gold/mylar 형태의 두 겹의 전기활성 구동기를 제작하였으며, 도판트의 종류에 따른 굽힘 구동 특성에 관한 연구를 수행하였다. 전도성 고분자는 전기적으로 산화/환원이 될 때에는 도판트의 이동에 의하여 부피 변화를 수반하게 된다. 도판트의 크기에 따라, 서로 다른 구동 특성을 나타내었는데, toluene sulfonate와 같은 작은 크기의 도판트는 산화/환원에 따라 PPy 필름의 내외로 자체 이동이 가능하며, 산화시에 PPy의 팽창이 관찰되었다. 그러나, dodecylbenzenesulfonate와 같은 커다란 도판트가 함유된 PPy는 산화/환원시에는 이들의 이온들은 움직임이 없는 것으로 나타났으며 환원시에 작은 양이온($Na^+$)이 필름내부로 유입되며 부피가 증가하는 현상이 관찰되었다.

Keywords

References

  1. Science and Applications of Conducting Polymers R.H. Baughman;L.W. Shacklette;W.R. Salaneck(ed);D.T. Clack(ed);E.J. Samuelsen(eds.)
  2. Solid State Commun. v.70 no.609 K. Yoshina;K. Nakao;M. Onada;R. sugimoto
  3. Makromol. Chem. Macromol Sym. v.51 no.193 R.H. Baughman
  4. Bioelectrochemistry and Bioenergetics v.38 no.411 T.F. Otero;J.M. Sansinena
  5. Molecular Electronics v.7 no.267 R.H. Baughman;L.W. Shacklette;R.L. Elsenbaumer
  6. Journal of Physical Chemistry v.96 no.25 Q. Pei;O. Inganas
  7. Synthetic Metals v.84 no.795 M. Kaneko;M. Fukui;W. Takashima;K. Kaneto
  8. Handbook of Organic and Conductive Molecules an Polymers v.4 T.F. Otero;H.S. Nalwa
  9. J. Intell. Mater. Syst. Struct. v.6 no.32 P. Chiarelli;A. Della Santa;D. Derossi;A. Mazzoldi
  10. Adv. Mater. v.5 no.630 E. Smela;O. Inganas;Q. Pei;I. Lundstrom
  11. Bioelectrochem. Bioenerg. v.42 no.117 T.F. Otero;J.M. Sansinena
  12. Synthetic Metals v.78 no.339 R.H. Baughman
  13. J. Phys. Chem. v.94 no.6117 R. Yang;D.F. Evans;L. Christensen;W.A. Hendrickson
  14. Synthetic Metals. v.73 no.247 M. Ghandi;P. Murray;G.M. Spnks;G.G. Wallace
  15. IBM J. Res. Dev. v.28 no.662 B.S. Berry;W.C. Pritchet
  16. J. Phys. Chem. v.100 no.15910 G. Maia;R.M. Torresi;E.A. Ticianelli;F.C. Nart