Changes of Methanogenic Pathway with Incubation Temperatures in the Littoral Sediment of Reservoir Paldang, Korea

팔당호 연안대 저질토에서 배양온도에 따른 메탄발생 경로의 변화

  • Published : 2001.03.31

Abstract

Changes in methanogenic pathway at low temperature were studied by incubation experiments of sediment slurries from the littoral zone of Reservoir Paldang. Methane production rates in sediment slurries increased exponentially between $5^{\circ}C$and $45^{\circ}C$, reached a maximum rate of $7.4\;nmol\;{\cdot}\;g^{-1}\;{\cdot}\;h^{-1}$ at $45^{\circ}C$, and then declined to low rate. The shift of incubation temperature from high temperature ($30^{\circ}C$) to lowtemperature ($15^{\circ}C$) resulted in a decrease of methane production rate and of hydrogen accumulation rate, and the transient accumulation of acetate concentration. Chlorofarm inhibited perfectly methanogenesis and resulted in the accumulation of hydrogen and acetate as immediate precursors for metltane formation at both incubation temperatures of $15^{\circ}C$ and $30^{\circ}C$. In terms of equivalent methane which was calculated from the two intermediary metabolites accumulated in absence of methanogenesis, methane production from acetate was accounted for 14% of total methanogenesis at $30^{\circ}C$ and 75% at $15^{\circ}C$, respectively. When the high acetate concentrations above 19 mM were added to sediment slurries, methane production was inhibited at the low temperature ($15^{\circ}C$) . Our results demonstrate that contribution of acetate on methanogenesis increases at low temperature, but this pathway is inhibited by high concentration of acetate. Therefore acetate-utilizing methanogensis appears to be a key reaction at low temperature, and seems to be one of bottlenecks of the low temperature anaerobic degradation of organic matter in littoral sediments of the reservoir.

저온에서 메탄발생 경로의 변화에 대하여 팔당호 연안대에서 채취한 저질토 슬러리를 배양하여 실험하였다. 저질토 슬러리의 메탄발생속도는 5${\sim}$45$^{\circ}C$ 범위에서 온도가 상승함에 따라서 지수함수적으로 증가하여 45$^{\circ}C$에서 7.4 nmol${\cdot}$g$^{-1}{\cdot}$h$^{-1}$로서 최대에 달한 후 급격히 감소하였다. 배양온도를 고온인 30$^{\circ}C$에서 저온인 15$^{\circ}C$로 감소시키면 메탄발생속도와 수소축적속도가 감소하였고 아세트산은 일시적으로 축적되었다. 배양온도 15$^{\circ}C$와 30$^{\circ}C$에서 클로로포름은 메탄발생을 완전히 억제하였고 메탄발생의 직접적 기질인 수소와 아세트산이 축적되었다. 이 수소와 아세트산의 축적량을 메탄발생량으로 환산하면, 아세트산으로부터의 메탄발생량은 30$^{\circ}C$와 15$^{\circ}C$에서 각각 총메탄발생량의 14%와 75%로 추정되었다. 또한 저온에서 저질토 슬러리에 아세트산을 19 mM 이상으로 첨가하면 메탄발생이 저해되었다. 결국 저온 조건에서는 메탄발생에 대한 아세트산의 상대적 기여도가 증가하고, 고농도의 아세트산에 의하여 메탄과정이 저해되었다. 그러므로 팔당호 연안대 저질토의 유기물 혐기분해에서 아세트산-이용 메탄발생과정은 저온에서 핵심과정이 되고, 고농도의 아세트산에 의한 병목현상이 일어난다고 판단된다.

Keywords

References

  1. 팔당호 줄(Zizania latifolia) 습지에서 메탄발생의 계절변화 공양학
  2. Chemosphere v.26 Review and assessment of methane emissions from wetland Bartlett, K.B.;R.C. Harriss
  3. FEMS Microbiol. Ecol. v.18 Intermediary metabolism in methanogenic paddy soil the influence of temperature Chin, K.J.;R. Conrad
  4. Appl. Environ. Microbiol. v.65 Effect of temperature on structure and function of the methanogenic achaeal community in an anoxic rice field soil Chin, K.J.;T. Lukow;R. Conrad
  5. Microbiol. Rev. v.60 Soil microorganisms as controllers of atmospheric trace gases(H₂, CO, CH₄, OCS, N₂O and NO) Conrad, R.
  6. FEMS Microbiol. Ecol. v.28 Contribution abd control of hydrogen concentrations in methanogenic soils and sediments Conrad, R.
  7. Methods in Aquatic Bascteriology Methods of studying methanogenic bacteria and methanogenic activites in aquatic environments Conard, R.;H. Schutz;B. Austin(ed.)
  8. FEMS Microbiol. Ecol. v.45 Temperature limitation of hydrogen turnover and methanogenesis in anoxic paddy soil Conrad, R.;H. Schutz;M. Babbel
  9. Soil Biol. biochem. v.25 Methane production and consumption and consumption in temperatue and subactic peat soils - response to temperature and pH Dunfield, P.;R. Knowles;R. Dumont;T.R. Moore
  10. App. Microbiol. Biotechnol. v.48 The effect of low temperature (5~29˚C) and adaptation on the methanogenic activtiy of biomass Kettunen, R.H.;Rintala, J.A.
  11. Chemosphere v.29 Global emissions of methane during the last several centuries Khalil, M.A.K;A. Rasmussen
  12. Chemosphere v.27 Methanogenic degradation of organic matter by anaerobic bacteria at low temperature Kotsyurbenko, O.R.;A.N. Nozhevnikova;G.A. Zavarzin
  13. Biology of Microorganisms Madigan, M.T.;J.M. Martinko;J. Parker
  14. Soil Sampling and Methods of Analysis Total nitrogen McGill, W.B.;C.T. Figueriedo;R. C. Martin(ed.)
  15. Wat. Sci. Tech. v.36 Methanogenesis in sediments from deep lakes at different temperatures (2~70˚C) Nozhevnikova, A.N.;Cl Holliger;A. Ammann;A.J.B. Zehnder
  16. FEMS Microbiol. Ecol. v.22 Temperature dependence of methane production from different precusors in a profucdal sediment (Lake Constance) Schulz, S.;H. Matsuyama;R. Conrad
  17. Biogeochemistry v.11 Influence of soil temperature on methane emission from rice paddy fields Schutz, H.;W. Seiler;R. Conrad
  18. Soil Sampling and Methods of Analysis Particle size distribution Sheldrick, B.H.;C. Wang;R. C. Martin(ed.)
  19. Appl. Environ. Microbiol. v.48 Differnt temperature optima for methane fromation when enrichments from acid peat are supplemented with acetate or hydrogen Svensson, B.H.
  20. Wat. Sci. Tech. v.36 Modelling methanogenesis during anaerobic conversion of coplex organic matter at low temperatures Vavilin, V.A.;L. Ya. Lokshina;S.V. Rytov;O.R. Kotsyurbenko;A.N. Nozhevnikova;S.N. Parshina
  21. Chemosphere v.26 Temperature regulation of methanogenesis in wetlands Wetermann, P.
  22. Soil Sci. Plant Nutr. v.13 Effect of temperature on the decomposition of organic substances in flooded soil Yamane, I.;K. Sato
  23. Appl. Environ. Microbiol. v.31 Temperature limitaion of methanogenesis in aquatic sediments Zeikus, J.G.;M.R. Winfrey
  24. Methanogenesis Physiological ecology of methanogens Zinder, S.H.;J.G. Ferry(ed.)
  25. Nature v.273 Production of methane and carbon dioxide from methane thiol and dimethyl sulphide by anaerobic lake sediments Zinder, S.H.;T.D. Brock