DOI QR코드

DOI QR Code

Regulation of Apoptosis by Nitrosative Stress

  • Kim, Ki-Mo (Vascular System Research Center, Kangwon National University) ;
  • Kim, Peter K.M. (Department of Surgery, School of Medicine, University of Pittsburgh) ;
  • Kwon, Young-Guen (Vascular System Research Center, Kangwon National University) ;
  • Bai, Se-Kyung (Department of Food and Nutrition, Division of Natural Sciences, Hallym University) ;
  • Nam, Woo-Dong (Department of Orthopaedic Surgery, School of Medicine, Kangwon National University) ;
  • Kim, Young-Myeong (Vascular System Research Center, Kangwon National University)
  • Published : 2002.01.31

Abstract

Nitrosative stress can prevent or induce apoptosis. It occurs via S-nitrosylation by the interaction of nitric oxide (NO) with the biological thiols of proteins. Cellular redox potential and non-heme iron content determine S-nitrosylation. Apoptotic cell death is inhibited by S-nitrosylation of the redox-sensitive thiol in the catalytic site of caspase family proteases, which play an essential role in the apoptotic signal cascade. Nitrosative stress can also promote apoptosis by the activation of mitochondrial apoptotic pathways, such as the release of cytochrome c, an apoptosis-inducing factor, and endonuclease G from mitochondria, as well as the suppression of NF-${\kappa}B$ activity. In this article we reviewed the mechanisms whereby S-nitrosylation and nitrosative stress regulate the apoptotic signal cascade.

Keywords

References

  1. Albina, J. E., Cui, S., Mateo, R. B. and Reichner, J. S. (1993) Nitric oxide-mediated apoptosis in murine peritoneal macrophages. J. Immunol. 150, 5080-5085.
  2. Beckman, J. S., Beckman, T. W., Chen, J., Marshall, P. A. and Freeman, B. A. (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc. Natl. Acad. Sci. USA 87, 1620- 1624. https://doi.org/10.1073/pnas.87.4.1620
  3. Beckman, J. S. and Koppenol, W. H. (1996) Nitric oxide, superoxide and peroxynitrite: the good the bad and the ugly. Am. J. Physiol. 271, 1424-1437. https://doi.org/10.1152/ajpcell.1996.271.5.C1424
  4. Boese, M., Mordvintcev, P. I., Vanin, A. F., Busse, R. and Mulsch, A. (1995) S-nitrosation of serum albumin by dinitrosyl-iron complex. J. Biol. Chem. 270, 29244-29249. https://doi.org/10.1074/jbc.270.49.29244
  5. Boldin, M. P., Goncharov, T. M., Goltsev, Y. V. and Wallach, D. (1996) Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death. Cell 85, 803-815. https://doi.org/10.1016/S0092-8674(00)81265-9
  6. Brockhaus, F. and Brune, B. (1999) p53 accumulation in apoptotic macrophages is an energy demanding process that precedes cytochrome c release in response to nitric oxide. Oncogene. 18, 6403-6410. https://doi.org/10.1038/sj.onc.1203058
  7. Brown, G. C. (1999) Nitric oxide and mitochondrial respiration. Biochim. Biophys. Acta 5, 351-369.
  8. Brune, B. and Lapetina, E. G. (1989) Activation of a cytosolic ADP-ribosyltransferase by nitric oxide-generating agents. J. BioI. Chem. 264, 8455-8458.
  9. Choi, D. W. (2001) Excitoxicity, apoptosis, and ischemic stroke. J. Biochem. Mol. Biol. 34, 8-14.
  10. Chun, S. Y., Eisenhauer, K. M., Kubo, M. and Hsueh, A. J. (1995) Interleukin-1 beta suppresses apoptosis in rat ovarian follicles by increasing nitric oxide production. Endocrinology. 136, 3120-3127. https://doi.org/10.1210/en.136.7.3120
  11. Chung, H. T., Pae, H. O., Choi, B. M., Billiar, T. R. and Kim, Y. M. (2001) Nitric oxide as a bioregulator of apoptosis. Biochem. Biophys. Res. Commun. 282, 1075-1079. https://doi.org/10.1006/bbrc.2001.4670
  12. Craen, M., Declercq, W., Brande, I., Fiers, W. and Vandenabeele, P. (1999) The proteolytic procaspase activation network: an in vitro analysis. Cell Death Differ. 6, 1117-1124. https://doi.org/10.1038/sj.cdd.4400589
  13. Desole, M. S., Sciola, L., Sircana, S., Godani, C., Migheli, R., Delogu, M. R., Piras, G., De Natale, G. and Miele, E. (1998) Protective effect of deferoxamine on sodium nitroprusside-induced apoptosis in PCl2 cells. Neurosci Lett. 247, 1-4. https://doi.org/10.1016/S0304-3940(98)00260-2
  14. Dawson, V. L., Kizushi, V. M., Huang, P. L., Snyder, S. H. and Dawson, T. M. (1996) Resistance to neurotoxicity in cortical cultures from neuronal nitric oxide synthase-deficient mice. J. Neurosci. 16, 2479-2487. https://doi.org/10.1523/JNEUROSCI.16-08-02479.1996
  15. Enari, M., Sakahira, H., Yokoyama, H., Okawa, K., Iwamatsu, A. and Nagata, S. (1998) A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391, 43- 50. https://doi.org/10.1038/34112
  16. Fehsel, K., Kroncke, K. D., Meyer, K. L., Huber, H., Wahn, V. and Kolb-Bachofen, V. (1995) Nitric oxide induces apoptosis in mouse thymocytes. J. Immunol. 155, 2858-2865.
  17. Fisch, C., Eu, J. P., Liu, L., Zeng, M. and Stamler, J. S. (2000) An apoptotic model for nitrosative stress. Biochemistry 39, 1040-1047. https://doi.org/10.1021/bi992046e
  18. Ignarro, L. J., Buga, G. M., Wood, R. E., Byrns, R. E. and Chaudhuri, G. (1987) Endotheilum-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc. Natl. Acad. Sci. USA 84, 9265-9269. https://doi.org/10.1073/pnas.84.24.9265
  19. Genaro, A. M., Hortelano, S., Alvarez, A., Martinez, C. and Bosca, L. (1995) Splenic B lymphocyte programmed cell death is prevented by nitric oxide release through mechanisms involving sustained Bcl-2 levels. J. Clin. Invest. 95, 1884-1890. https://doi.org/10.1172/JCI117869
  20. Gross, S. S. and Wolin, M. S. (1995) Nitric oxide: pathophysiological mechanisms. Annu. Rev. Physiol. 57, 737- 769. https://doi.org/10.1146/annurev.ph.57.030195.003513
  21. Gruetter, D. Y., Gruetter, C. A., Barry, B. K., Baricos, W. H., Hyman, A. L., Kadowitz, P. J. and Ignarro, L. J. (1980) Activation of coronary arterial guanylate cyclase by nitric oxide, nitroprusside, and nitrosoguanidine--inhibition by calcium, lanthanum, and other cations, enhancement by thiols. Biochem. Pharmacol. 29, 2943-2950. https://doi.org/10.1016/0006-2952(80)90042-8
  22. Ignarro, L. J., Fukoto, J. M., Griscavage, J. M., Rogers, N. E. and Burns, R. E. (1993) Oxidation of nitric oxide in aqueous solution to mtnte but not mtnte: comparison with enzymatically formed nitric oxide from L-arginine. Proc. Natl. Acad. Sci. USA 90, 8103-8107. https://doi.org/10.1073/pnas.90.17.8103
  23. Kaneto, H., Fujii, J., Seo, H. G., Suzuki, K., Matsuoka, T., Nakamura, M., Tatsurni, H., Yamasaki, Y., Kamada, T. and Taniguchi, N. (1995) Apoptotic cell death triggered by nitric oxide in pancreatic beta-cells. Diabetes. 44, 733-738. https://doi.org/10.2337/diabetes.44.7.733
  24. Kerwin, J. F., Lancaster, J. R. Jr. and Feldman, P. L. (1995) Nitric oxide: a new paradigm for second messenger. J. Med. Chem. 38, 4343-4362. https://doi.org/10.1021/jm00022a001
  25. Kharitonov, V. G., Sundquist, A. R. and Sharma, V. S. (1995) Kinetics of nitrosation of thiols by nitric oxide in the presence of oxygen. J. BioI. Chem. 270, 28158-28164. https://doi.org/10.1074/jbc.270.47.28158
  26. Kim, Y. M., Bergonia, H. and Lancaster, J. R. Jr. (1995) Nitrogen oxide-induced autoprotection in isolated rat hepatocytes. FEBS Lett. 374, 228-232. https://doi.org/10.1016/0014-5793(95)01115-U
  27. Kim, Y. M., Bergonia, H. A., Muller, C., Pitt, B. R., Watkins, W. D., and Lancaster, J. R. Jr. (1995) Loss and degradation of enzyme-bound heme induced by cellular nitric oxide synthesis. J. Biol. Chem. 270, 5710-5713. https://doi.org/10.1074/jbc.270.11.5710
  28. Kim, Y. M., Talanian, R. V. and Billiar, T. R. (1997) Nitric oxide inhibits apoptosis by preventing increases in caspase-3-like activity via two distinct mechanisms. J. BioI. Chem. 272, 31138-31148. https://doi.org/10.1074/jbc.272.49.31138
  29. Kim, Y. M., de Vera, M. E., Watkins, S. C. and Billiar, T. R. (1997) Nitric oxide protects cultured rat hepatocytes from tumor necrosis factor-alpha-induced apoptosis by inducing heat shock protein 70 expression. J. BioI. Chem. 272, 1402-1411. https://doi.org/10.1074/jbc.272.2.1402
  30. Kim, Y. M., Kim, T. H., Seol, D. W., Talanian, R. V. and Billiar, T. R. (1998) Nitric oxide suppression of apoptosis occurs in association with an inhibition of Bcl-2 cleavage and cytochrome c release. J. BioI. Chem. 273, 31437-31441. https://doi.org/10.1074/jbc.273.47.31437
  31. Kim, Y. M., Bombeck, C. A. and Billiar, T. R. (1999) Nitric oxide as a bifunctional regulator of apoptosis. Circ Res. 84, 253-256. https://doi.org/10.1161/01.RES.84.3.253
  32. Kim, Y. M., Chung, H. T., Kim, S. S., Han, J. A., Yoo, Y. M., Kim, K. M., Lee, G. H., Yun, H. Y., Green, A., Li, J., Simmons, R. L. and Billiar, T. R. (1999) Nitric oxide protects PCI2 cells from serum deprivation-induced apoptosis by cGMP-dependent inhibition of caspase signaling. J. Neurosci. 19, 6740-6747.
  33. Kim,Y. M., Chung, H. T., Simmons, R. L. and Billiar, T. R. (2000) Cellular non-heme iron content is a determinant of rutnc oxide-mediated apoptosis, necrosis, and caspase inhibition. J. BioI. Chem. 275, 10954-10961. https://doi.org/10.1074/jbc.275.15.10954
  34. Kim, Y. M., Kim, T. H., Chung, H. T., Talanian, R. V., Yin, X. M. and Billiar, T. R. (2000) Nitric oxide prevents tumor necrosis factor alpha-induced rat hepatocyte apoptosis by the interruption of mitochondrial apoptotic signaling through S-nitrosylation of caspase-8. Hepatology 32, 770-778. https://doi.org/10.1053/jhep.2000.18291
  35. Kwon, N. S., Stuehr, D. J. and Nathan, C. F. (1991) Inhibition of tumor cell ribonucleotide reductase by macrophage-derived nitric oxide. J. Exp. Med. 174, 761-767. https://doi.org/10.1084/jem.174.4.761
  36. Kwon, Y. G., Min, J. K, Kim, K. M., Lee, D. J., Billiar, T. R. and Kim, Y. M. (2001) Sphingosine 1-phosphate protects human umbilical vein endothelial cells from serum-deprived apoptosis by nitric oxide production. J. BioI. Chem. 276, 10627-10633. https://doi.org/10.1074/jbc.M011449200
  37. Lancaster, J. R. Jr. (1994) Simulation of the diffusion and reaction of endogenously produced nitric oxide. Proc. Natl. Acad. Sci. USA 91, 8137-8141. https://doi.org/10.1073/pnas.91.17.8137
  38. Lee, R. and Collins, T. (2001) Nuclear factor-kappaB and cell survival: lAPs call for support. Circ. Res. 88, 262-264. https://doi.org/10.1161/01.RES.88.3.262
  39. Li, H., Zhu, H, Xu, C. J. and Yuan, J. (1998) Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94, 491-501. https://doi.org/10.1016/S0092-8674(00)81590-1
  40. Li, L. Y., Luo, X. and Wang, X. (2001) Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412, 95-99. https://doi.org/10.1038/35083620
  41. Liu, X., Kim, C. N., Yang, J., Jemmerson, R. and Wang, X. (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86, 147-157. https://doi.org/10.1016/S0092-8674(00)80085-9
  42. Liu, X., Zou, H., Slaughter, C. and Wang, X. (1997) DFF, a heterodirneric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 89, 175- 184. https://doi.org/10.1016/S0092-8674(00)80197-X
  43. Luo, X., Budihardjo, J., Zou, H., Slaughter, C. and Wang, X. (1998) Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94, 481-490. https://doi.org/10.1016/S0092-8674(00)81589-5
  44. Li, J., Billiar, T. R., Talanian, R. V. and Kim, Y. M. (1997) Nitric oxide reversibly inhibits seven members of the caspase family via S-nitrosylation. Biochem. Biophys. Res. Commun. 240, 419- 424. https://doi.org/10.1006/bbrc.1997.7672
  45. Marshall, H. E., Merchant, K. and Stamler, J. S. (2001) Nitrosation and oxidation in the regulation of gene expression. FASEB J. 14, 1889-1900. https://doi.org/10.1096/fj.00.011rev
  46. Mannick, J. B., Asano, K., Izumi, K., Kieff, E. and Stamler, J. S. (1994) Nitric oxide produced by human B lymphocytes inhibits apoptosis and Epstein-Barr virus reactivation. Cell 79, 1137- 1146. https://doi.org/10.1016/0092-8674(94)90005-1
  47. Mannick, J. B., Miao, X. Q. and Stamler, J. S. (1997) Nitric oxide inhibits Fas-induced apoptosis. J. BioI. Chem. 272, 24125- 24128. https://doi.org/10.1074/jbc.272.39.24125
  48. Marshall, H. E. and Stamler, J. S. (2001) Inhibition of NF-kappa B by S-nitrosylation. Biochemistry 40, 1688-1693. https://doi.org/10.1021/bi002239y
  49. Messmer, U. K and Brune, B. (1996) Nitric oxide-induced apoptosis: p53-dependent and p53-independent signaling pathways. Biochem. J. 319, 299-305. https://doi.org/10.1042/bj3190299
  50. Nathan, C. F. (1992) Nitric oxide as a secretory product of mammalian cells. FASEB J. 6, 3051-3064. https://doi.org/10.1096/fasebj.6.12.1381691
  51. Nicholson, D. W., Ali, A., Thornberry, N. A., Vaillancourt, J. P., Ding. C. K., Gallant, M., Gareau, Y., Griffin, P. R., Labelle. M. and Lazebnik, Y. A. (1995) Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376, 37-43. https://doi.org/10.1038/376037a0
  52. Nussler, A. K., Geller, D. A., Sweetland, M. A., Di-Silvio, M. Billiar, T. R., Madariaga, J. B., Simmons, R. L. and Lancaster, J. R. Jr. (1993) Induction of nitric oxide synthesis and its reactions in cultured human and rat hepatocytes stimulated with cytokines plus LPS. Biochem. Biophys. Res. Commun. 194, 826-835. https://doi.org/10.1006/bbrc.1993.1896
  53. Sakahira, H., Enari, M. and Nagata, S. (1998) Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature 391, 96-99. https://doi.org/10.1038/34214
  54. Son, K. and Kim, Y. M. (1995) In vivo cisplatin-exposed macrophages increase immunostimulant-induced nitric oxide synthesis for tumor cell killing. Cancer Res. 55, 5524-5527.
  55. Stamler, J. S. (1994) Redox signaling: nitrosylation and related target interactions of nitric oxide. Cell 78, 931-936. https://doi.org/10.1016/0092-8674(94)90269-0
  56. Stamler, J. S., Lamas, S. and Fang, F. C. (2001) Nitrosylation the prototypic redox-based signaling mechanism. Cell 106, 675- 683. https://doi.org/10.1016/S0092-8674(01)00495-0
  57. Steller, H. (1995) Mechanisms and genes of cellular suicide. Science 267, 1445-1449. https://doi.org/10.1126/science.7878463
  58. Thornberry, N. A. and Lazebnik, Y. (1998) Caspases: enemies within. Science 281, 1312-1316. https://doi.org/10.1126/science.281.5381.1312
  59. Tzeng, E., Kim, Y. M., Pitt, B. R., Lizonova, A., Kovesdi, I. and Billiar, T. R. (1997) Adenoviral transfer of the inducible nitric oxide synthase gene blocks endothelial cell apoptosis. Surgery. 122, 255-263. https://doi.org/10.1016/S0039-6060(97)90016-7
  60. Umansky, V., Ratter, F., Lampel, S., Bucur, M., Schirrmacher, V. and Ushmorov, A. (2001) Inhibition of nitric-oxide-mediated apoptosis in Jurkat leukemia cells despite cytochrome c release. Exp. Cell. Res. 265, 274-282. https://doi.org/10.1006/excr.2001.5188
  61. Wang, C. Y., Mayo, M. W., Komeluk, R. G., Goeddel, D. V. and Baldwin, A. S. Jr. (1998) NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 281, 1680-1683. https://doi.org/10.1126/science.281.5383.1680
  62. Wink, D. A., Darbyshire, J. F., Nims, R. W., Saavedra, J. E. and Ford, P. C. (1993) Reactions of the bioregulatory agent nitric oxide in oxygenated aqueous media: determination of the kinetics for oxidation and nitrosation by intermediates generated in the NO/$O_2$ reaction. Chem. Res. Toxicol. 6, 23-27. https://doi.org/10.1021/tx00031a003
  63. Xie, Q. W. and Nathan, C. F. (1994) The high-output nitric oxide pathway: role and regulation. J. Leuk. BioI. 56, 576-582. https://doi.org/10.1002/jlb.56.5.576
  64. Yang, J., Liu, X., Bhalla, K., Kim, C. N., lbrado, A. M, Cai, J., Peng, T. I., Jones, D. P. and Wang, X. (1997) Prevention of apoptosis by Bcl-2: re!ease of cytochrome c from mitochondria blocked. Science 21, 1129-1132.
  65. Zhu, L., Gunn, C. and Bechman, J. S. (1991) Bactericidal activity of peroxynitrite. Arch. Biochem. Biophys. 298, 452-457. https://doi.org/10.1016/0003-9861(92)90434-X

Cited by

  1. Neuroprotective Effect of Chuk-Me-Sun-Dan on NMDA- and AMPA-Evoked Nitric Oxide Synthase Activity in Mouse Brain vol.27, pp.3, 2005, https://doi.org/10.1080/08923970500242319
  2. Cobalt Chloride-induced Apoptosis and Extracellular Signal-regulated Protein Kinase Activation in Human Cervical Cancer HeLa Cells vol.36, pp.5, 2003, https://doi.org/10.5483/BMBRep.2003.36.5.468
  3. Antioxidants of Edible Mushrooms vol.20, pp.10, 2015, https://doi.org/10.3390/molecules201019489
  4. Cryptococcus neoformans glucuronoxylomannan induces macrophage apoptosis mediated by nitric oxide in a caspase-independent pathway vol.20, pp.12, 2008, https://doi.org/10.1093/intimm/dxn112
  5. Thiol-protease oxidation in age-related neuropathology vol.51, pp.2, 2011, https://doi.org/10.1016/j.freeradbiomed.2011.04.017
  6. The Potential Role of Nitric Oxide Synthase in Survival and Regeneration of Magnocellular Neurons of Hypothalamo-Neurohypophyseal System vol.34, pp.11, 2009, https://doi.org/10.1007/s11064-009-9965-0
  7. Nitrosative stress and apoptosis in non-anemic healthy rats induced by intravenous iron sucrose similars versus iron sucrose originator vol.28, pp.2, 2015, https://doi.org/10.1007/s10534-015-9822-3
  8. Modificomics: Posttranslational modifications beyond protein phosphorylation and glycosylation vol.24, pp.2, 2007, https://doi.org/10.1016/j.bioeng.2007.03.002
  9. Achieving the Balance between ROS and Antioxidants: When to Use the Synthetic Antioxidants vol.2013, 2013, https://doi.org/10.1155/2013/956792
  10. Nickel Hexacyanoferrate-Based Sensor Electrode for the Detection of Nitric Oxide at Low Potentials vol.19, pp.1, 2007, https://doi.org/10.1002/elan.200603668
  11. Acquired chemoresistance in pancreatic carcinoma cells: induced secretion of IL-1β and NO lead to inactivation of caspases vol.25, pp.28, 2006, https://doi.org/10.1038/sj.onc.1209423
  12. Nitrosative Stress and Pathogenesis of Insulin Resistance vol.0, pp.0, 2006, https://doi.org/10.1089/ars.2007.9.ft-17
  13. Mitochondria in traumatic brain injury and mitochondrial-targeted multipotential therapeutic strategies vol.167, pp.4, 2012, https://doi.org/10.1111/j.1476-5381.2012.02025.x
  14. Comparison of some antioxidant properties of plant extracts from Origanum vulgare, Salvia officinalis, Eleutherococcus senticosus and Stevia rebaudiana vol.50, pp.7, 2014, https://doi.org/10.1007/s11626-014-9751-4
  15. Intracellular substrate cleavage: a novel dimension in the biochemistry, biology and pathology of matrix metalloproteinases vol.45, pp.5, 2010, https://doi.org/10.3109/10409238.2010.501783
  16. Nitrosylation: An adverse factor in Uremic Hemolytic Syndrome. Antitoxin effect of Ziziphus mistol Griseb vol.56, 2013, https://doi.org/10.1016/j.fct.2013.02.036
  17. Strategies for Reducing or Preventing the Generation of Oxidative Stress vol.2011, 2011, https://doi.org/10.1155/2011/194586
  18. Synergistic antiglioma action of hyperthermia and nitric oxide vol.583, pp.1, 2008, https://doi.org/10.1016/j.ejphar.2007.12.028
  19. Nitrosative Stress and Pathogenesis of Insulin Resistance vol.9, pp.3, 2007, https://doi.org/10.1089/ars.2006.1464
  20. Cisplatin-induced nitrosylation of p53 prevents its mitochondrial translocation vol.46, pp.12, 2009, https://doi.org/10.1016/j.freeradbiomed.2009.03.015
  21. β3-adrenergic receptor activity modulates melanoma cell proliferation and survival through nitric oxide signaling vol.387, pp.6, 2014, https://doi.org/10.1007/s00210-014-0969-1
  22. Neuronal Apoptosis in Neurodegeneration vol.9, pp.8, 2007, https://doi.org/10.1089/ars.2007.1511
  23. Apoptotic neuronal death in Parkinson's disease: Involvement of nitric oxide vol.54, pp.2, 2007, https://doi.org/10.1016/j.brainresrev.2007.02.001
  24. Effect of oxygen free radicals and nitric oxide on apoptosis of immune organ induced by selenium deficiency in chickens vol.26, pp.2, 2013, https://doi.org/10.1007/s10534-013-9612-8
  25. Protein S-nitrosylation: Role for nitric oxide signaling in neuronal death vol.1820, pp.6, 2012, https://doi.org/10.1016/j.bbagen.2011.07.010
  26. Palmitate-induced NO production has a dual action to reduce cell death through NO and accentuate cell death through peroxynitrite formation vol.78, pp.2, 2008, https://doi.org/10.1016/j.plefa.2007.09.003
  27. Apoptotic transcriptional profile remains activated in late remodeled left ventricle after myocardial infarction in swine infarcted hearts with preserved ejection fraction vol.70, pp.1, 2013, https://doi.org/10.1016/j.phrs.2012.12.007
  28. Oxidized forms of dietary antioxidants: Friends or foes? vol.39, pp.2, 2014, https://doi.org/10.1016/j.tifs.2014.07.011
  29. -Nitrosylation: NO-Related Redox Signaling to Protect Against Oxidative Stress vol.8, pp.9-10, 2006, https://doi.org/10.1089/ars.2006.8.1693