DOI QR코드

DOI QR Code

Effect of Abnormal Grain Growth and Heat Treatment on Electrical Properties of Semiconducting BaTiO3Ceramics

  • Lee, Joon-Hyung (Department of Inorganic Materials Engineering, Kyungpook National University) ;
  • Cho, Sang-Hee (Department of Inorganic Materials Engineering, Kyungpook National University)
  • Published : 2002.01.01

Abstract

Effect of abnormal grain growth and heat treatment time on the electrical properties of donor-doped semiconductive BaTiO$_3$ceramics was examined. La-doped BaTiO$_3$ceramics was sintered at 134$0^{\circ}C$ for different times from 10 to 600 min in order to change the volume fraction of the abnormal grains in samples. As a result, samples with different volume fraction of abnormal grain growth from 22 to 100% were prepared. The samples were annealed at 120$0^{\circ}C$ for various times. The resistivity of the sam-ples at room and above Curie temperature was examined. The complex impedance measurement as functions of the volume fraction of abnormal grains and annealing time was conducted. Separation of complex impedance semicircle was observed in a sample in which abnormal and fine grains coexist. The results are discussed from a viewpoint of microstructure-property relationship.

Keywords

References

  1. Advances in Ceramics;Grain Boundary Phenmena in Electronic Ceramics v.1 Capacitors Based on Ceramic Grain Boundary Barrier Layers Review G. Goodman;L. M. Levinson(ed.)
  2. Advances in Ceramics, Additives and Interface in Electronic Ceramics v.7 Physics and Technology of PTC-type BaTiO₃Ceramics H. Ihrig;M. F. Yan(ed.);A. H. Heuer(ed.)
  3. J. Am. Ceram. Soc. v.76 no.2 Grain Boundary Oxidation in PTCR Barium Titanate Thermistors A. B. Alles;V. L. Burdick https://doi.org/10.1111/j.1151-2916.1993.tb03798.x
  4. Br. Ceram. Proc. v.36 The Effect of Grain Size on the Dielectric Properties of Barium Titanate Ceramics A. J. Bell;A. J. Moulson
  5. J. Am. Ceram. Soc. v.80 no.5 Dedensification and Anomalous Grain Growth during Sintering of Undoped Barium Titanate M. Demartin;C. Herard;C. Carry;J. Lematre https://doi.org/10.1111/j.1151-2916.1997.tb02949.x
  6. Acta Mater. v.48 no.7 Grain Boundary Faceting and Abnormal Grain Growth in BaTiO₃ B-K. Lee;S-Y. Chung;S-J. L. Kang https://doi.org/10.1016/S1359-6454(99)00434-6
  7. J. Am. Ceram. Soc. v.70 no.1 Control of Liquid-phase-enhanced Discontinuous Grain Growth in Barium Titanate D. F. K. Henning;R. Janssen;P. J. L. Reynen https://doi.org/10.1111/j.1151-2916.1987.tb04847.x
  8. Sci. Ceram. v.12 Recrystallization of Barium Titanate Ceramics D. Hennings
  9. J. Kor. Ceram. Soc. v.32 no.1 Densification Behavior of BaTiO₃Ceramics with Grain Growth T. H. Lee;J. J. Kim;N. K. Kim;S. H. CHo
  10. J. Kor. Ceram. Soc. v.32 no.2 Abnormal Grain Growth Behavior of BaTiO₃Ceramics with Controlling of Particle Sizw Distribution of Calcined Powder T. H. Lee;J. J. Kim;N. K. Kim;S. H. Cho
  11. J. Kor. Ceram. Soc. v.32 no.1 Abnormal Grain Growth Behavior of BaTiO₃Ceramics with Addition of Seed Grains T. H Lee;J. J. Kim;N. K. Kim;S. H. Cho
  12. J. Am. Ceram. Soc. v.74 no.8 Phase Relations in the Barium Titanate-titanium Oxide System K. W. Kirby;B. A. Wechsler https://doi.org/10.1111/j.1151-2916.1991.tb07797.x
  13. J. Am. Ceram. Soc. v.54 no.9 Exaggerated Grain Growth in Liquid-phase Sintering of BaTiO₃ Y. Matsuo;H. Sasaki https://doi.org/10.1111/j.1151-2916.1971.tb12391.x
  14. Am. Ceram. Soc. Bull. v.47 no.3 Semiconducting $BaTiO_3$ with Addition of $Al_2O_3$, $SiO_2\;and\;TiO_2$ Y. Matsuo;M. Fujimura;H. Sasaki;K. Hagase;S. Hayakawa
  15. J. Am. Ceram. Soc. v.83 no.2 Growth of BaTiO₃Grains by the Twin-plane Reentrant Edge Mechanism M-K. Kang;Y-S. Yoo;D-Y. Kim;N. M. Hwang https://doi.org/10.1111/j.1151-2916.2000.tb01201.x
  16. J. Eur. Ceram. Soc. v.17 Effect of SiO₂and TiO₂Addition on the Exaggerated Grain Growth of BaTiO₃ Y-S. Yoo;H. Kim;D-Y. Kim https://doi.org/10.1016/S0955-2219(96)00134-3
  17. J. Am. Ceram. Soc. v.70 no.1 Control of Liquid-phase-enhanced Discontinuous Grain Growth in Barium Titanate D.F.K. Hennings;R. Janssen;P.J.L. Reynen https://doi.org/10.1111/j.1151-2916.1987.tb04847.x
  18. Sci. Ceram. v.12 Recrystallization of Barium Titanate Ceramics D. Hennings
  19. J. Am. Ceram. Soc. v.43 no.6 Processing of Positive Temperature Coefficient Thermistors H. A. Sauer;S. R. Fisher https://doi.org/10.1111/j.1151-2916.1960.tb13657.x
  20. Ceram. Bull. v.62 no.2 Electrical Properties of Semiconducting BaTiO₃Ceramics by Liquid-phase Sintering W. Y. Howng;C. McCutcheon
  21. Quantitative Stereology E. E. Underwood
  22. Mater. Res. Bull. v.21 no.9 Complex-phase Impedance Analysis for Semiconducting Barium Titanate H. S. Matti;R. N. Basu https://doi.org/10.1016/0025-5408(86)90227-8
  23. The Physics of Amorphous Solid R. Zallen
  24. Ceramic Microstructure v.76 Microstructure-property Relations for Dielectric Ceramics: I. Mixing of Isotropic Homogeneous Linear Dielectrics D. A. Payne;L. E. Cross;R. M. Fulrath(ed.);J. A. Park(ed.)
  25. J. Kor. Ceram. Soc. v.30 no.1 Variation of Dielectric Constant with the Volume Fraction of Pyrochlore Phase in the PMN-pyrochlore Diphasic System; Application of General Effective Media Equation K. I. Huh;J. J. Kim;N. K. Kim;J. H. Kim;S. H. Cho
  26. Mater. Res. Bull. v.13 Connectivity and Piezoelectric-pyroelectric Composites R. E. Newnhan;D. P. Skinner;L. E. Cross https://doi.org/10.1016/0025-5408(78)90161-7
  27. Philips Tech. Rev. v.31 no.5 Defect Chemistry and Electrical Conductivity of Doped Barium Titanate Ceramics J. Daniels;K. H. Hardtl;D. Hennings;R. Wernicke
  28. Philips Tech. Rev. v.38 no.3 The PTC Effect of Barium Titanate J. Daniels;K. H. Hardtl;R. Wernicke
  29. Solid State Electron. v.3 no.1 Barium Titanate as a Semiconductor with Blocking Layers W. Heywang https://doi.org/10.1016/0038-1101(61)90080-6
  30. J. Mat. Sci. v.6 Semiconducting Barium Titanate W. Heywang https://doi.org/10.1007/BF00550094