Changes in the Levels of $\gamma$-Aminobutyric Acid and Some Amino Acids by Application of a Glutamic Acid Solution for the Germination of Brown Rices

글루탐산 용액 처리에 따른 발아현미 중의 감마-아미노낙산 및 일부 아미노산 함량변화

  • Published : 2002.02.01

Abstract

The changes in the levels of $\gamma$ -aminobutyric acid (GABA) and some free amino acids were investigated in germinating brown rices. Ungerminated brown rices were germinated for 72 hrs by application of the following solutions: 1) distilled water, 2) 50 ppm lactic acid, 3) 5 mM glutamic acid. The GABA levels were enhanced in all germinated states of brown rices compared with ungerminated ones, highest in the germinated brown rices by 5 mM glutamic acid solution. Alanine levels were also enhanced significantly in the germinated brown rices. The levels of aspartic acid and glutamic acid were decreased significantly in all the germinated states. The levels of serine decreased during germination in the solutions of water and lactic acid were increased by the germination in the glutamic acid solution. The data show that germination of brown rices by the application of the glutamic acid solution can significantly increase the levels of GABA and can restore the serine level.

GABA가 고함유된 발아현미를 생산할 수 있는 전략을 마련하고자 현미발아시 통상적인 물발아구 외에 젖산발아구, glutamic acid발아구로 나누어 발아 이전의 현미와 GABA 및 일부 유리아미노산 함량을 비교분석하였다. 5 mM glutamic acid 용액을 발아에 사용한 경우 가장 높은 GABA 함량 증진을 보여 시료 g당 및 시료 추출물 중의 단백질 mg당 증가정도가 발아하지 않은 현미에 비해 각각 8배와 12배로 나타났다. 또한 glutamic acid 발아구는 물발아나 젖산발아시 현저히 감소되던 serine의 함량을 오히려 증진시켰다. 모든 발아구에서 GABA 및 alanine 함량이 증진된 것과 는 반대로 glutamic acid와 aspartic acid 함량은 현저히 감소 하였다. 이는 발아 과정에 의해 glutamic acid는 GABA로 aspartic acid는 alanine으로 전환된 것에 기인된 것이라 여겨진다. 이상의 결과를 종합하면 현미발아시 glutamic acid액을 사용하면 기능성 물질인 GABA 함량을 현저히 증진시키며, serine의 감소를 막을 수 있어 기능성이 보강된 발아현미를 얻을 수 있을 것으로 기대된다.

Keywords

References

  1. Receptor Pharmacology and Function GABA receptors Krogsgaard-Larsen, P.;M. Williams(ed.);R. A. Glennon(ed.);P.M.W.M. Timmermans(ed.)
  2. Trends Neurosci. v.17 Bringing the cleft at GABA synapses in the brain Mody, I.;Y. Dekoninck;T. S. Otis;I. Soltesz https://doi.org/10.1016/0166-2236(94)90155-4
  3. Food Processing v.31 no.9 Accumulation of γ-aminobutyric acid(GABA) in the rice germ Nakagawa, K.;A. Onota
  4. Phytochemistry v.29 Metabolism enzymology and possible roles of 4-aminobutyrate in higher plants Satya Narayan, V.;Nair, P. M. https://doi.org/10.1016/0031-9422(90)85081-P
  5. Plant Physiol. v.115 The metabolism and functions of γ-aminobutyric acid Bown, A. W.;B. J. Shelp https://doi.org/10.1104/pp.115.1.1
  6. Plant Physiol. v.104 The synthesis of γ-aminobutyric acid in response to treatments reducing cytosolic pH Crawford, L. A.;A. W. Bown;K. E. Breitkreuz;F. C. Guinel https://doi.org/10.1104/pp.104.3.865
  7. Plant Physiol. v.49 Anaerobic accumulatin of γ-aminobutyric acid and alanine in radish leaves (Raphanus saitivus L.) Streeter, J. G.;Thompson, J. F. https://doi.org/10.1104/pp.49.4.572
  8. Trends Plant Sci. v.3 Calmodulin, calmodulin-related proteins and plant responses to the environment Snedden, W. A.;H. Fromm https://doi.org/10.1016/S1360-1385(98)01284-9
  9. Plant Cell v.6 Analysis of a soluble calmodulin binding protein from fava bean roots: Identification of glutamate decarboxylase as a calmodulin-activated enzyme Ling, V.;W. A. Snedden;B. J. Shelp;S. M. Assmann https://doi.org/10.1105/tpc.6.8.1135
  10. Plant Physiol. v.108 Calcium/calmodulin activation of soybean glutamate decarboxylase Snedden, W. A.;T. Arazi;H. Fromm;B. J. Shelp https://doi.org/10.1104/pp.108.2.543
  11. Mol. Cells v.8 Cloning and characterization of a tobacco cDNA encoding calcium/calmodulin-dependent glutamate decarboxylase Yun, S. J.;S. H. Oh
  12. Korean J. Food. Sci. Technol. v.24 Changes in γ-aminobutyric acid(GABA) and the main constituents by treatment conditions and of anaerobically treated green tea leaves Chang, J. S.;B. S. Lee;Y. G. Kim
  13. Korean Soci. Crop Sci. v.43 Effect of anaerobic treatment on carbohydrate-hydrolytic enzyme activities and free amino acid contents in barly malt Yun, S. J.;K. G. Choi;J. K. Kim
  14. J. Korean Soc. Agric. Chem. Biotechnol. v.43 no.1 Application effects of chitosan fertilizer on the growth of cabbage and GABA contents in the cabbage Oh, S. H.;K. W. Seo;D. S. Choi;K. S. Han
  15. J. Korean Soc. Food Sci. Nutr. v.29 no.3 Investigation of γ-aminobutyric acid in Chinese cabbages and effects of the cabbage diets on lipid metabolism and liver function of rats administered with ethanol Cha, Y. S.;S. H. Oh
  16. Kor. J. Biotechnol. Bioeng. v.15 Production of the quality germinated brown rices containing high γ-aminobutyric acid by chitosan application Oh, S. H.;Y. G. Choi
  17. Anal. Biochem. v.72 A rapid and sensitive method for the quantitation of microgram quantities of proteins utilizing the principle dye binding Bradford, M. M. https://doi.org/10.1016/0003-2697(76)90527-3
  18. Plant Sci. v.122 Changes in primary metabolism in connection with alkaloid biosynthesis in solanaceous cell suspension Marty, D.;F. Mesnard;F. Gillet-Manceau;M. A. Fliniaux;J. P. Monti https://doi.org/10.1016/S0168-9452(96)04534-7
  19. Plant Cell Physiol. v.36 no.8 Involvement of calcium and calmodulin in protein and amino acids metabolism in rice roots under anoxia Aurisano, N.;A. Bertani;R. Reggiani
  20. Principles of Biochemistry(2nd ed.) Lehninger, A. L.;L. N. David;M. C. Michael