Factors Affecting HETP in Capillary Gas Chromatography

모세관 기체 크로마토그래미에서 HETP에 영향을 미치는 인자

  • 노경호 (초정밀분리기술센터, 인하대학교 화학공학과) ;
  • 나영진 (초정밀분리기술센터, 인하대학교 화학공학과) ;
  • 정용안 (초정밀분리기술센터, 인하대학교 화학공학과)
  • Published : 2002.02.01

Abstract

The election profiles with different flow rates of motile phase were experimentally measured to investigate the effects on HETP in capillary gas chromatography. Based on the correlation coefficient ($r^2$), the first and second moments as well as HETP were determined from the elution cuties, and the parameters used in empirical equations were estimated. The empirical equations were expressed in terms of mobile phase velocity, and the theoretical Golay equation was considered. The samples were d-limonene and perillyl alcohol, potential anticancer agent mainly was contained in the peel of orange. From the experimental results, HETP of the samples were increased with mobile phase velocities. The correlation coefficient of d-limonene was in the range between 0.8265 and 0.8465, while that of perillyl alcohol was between 0.9353 and 0.9374. The total HETP was composed of $H_{g}$, $H_{l}$ and Hc, and Hg had the greatest effect on HETP, but HI showed a negligible effect. In terms of HETP, the optimum velocity of mobile phase was present.

모세관 기체 크로마토그래피에서 HETP에 영향을 미치는 인자를 고찰하기 위해서 이동상의 유량에 대한 체류분포곡선을 측정하였다. 상관도($r^2$)를 기준으로 측정된 분포곡선으로부터 1, 2차 모멘트와 HETP를 계산하여, 실험식의 매개변수를 추산하였다. 실험식은 이동상의 유속에 대한 함수로서 표시되었으며 이론적인 Golay 식도 고려하였다. 실험에 사용된 시료는 글 표피에 많이 포함된 항암제인 d-limonene와 POH이었다. 실험결과에 의하면, 유속이 증가함에 따라 d-limonene과 POH의 HETP가 증가하였다. d-limonene의 상관도는 0.8265에서 0.8465이었고, POH에서는 0.9353에서 0.9374범위를 나타내었다. $H_g$, $H_{l}$$H_{c}$를 각각 계산하여 전체 HETP에 미치는 영향을 고찰한 결과, d-limonene과 POH의 $H_{g}$가 HETP에 가장 큰 영향을 주었지만, $H_{l}$는 거의 영향을 미치지 않았다. HETP에 관하여 최적 이동상의 유속이 존재하였다.

Keywords

References

  1. Varian Aerograph Basic Liquid Chromatography Hadden;Nina;Fred Barmann;Fred MacDonald;Miner Munk
  2. J. Chrom. A. v.872 Use of equations for the description of experimental dependence of the height equivalent to a theoretical plate on carrier gas velocity in capillary gas?liquid chromatography Berezkin, V. G.;Irina V. Malyukova;Damien S. Avoce https://doi.org/10.1016/S0021-9673(99)01275-3
  3. J. Chrom. A v.828 Extraction and purification of perillyl alcohol from Korean orange peel by reversed-phase high-perfomance liquid chromatography Jung, Y. A.;K. H. Row https://doi.org/10.1016/S0021-9673(98)00785-7
  4. Cancer Letters v.104 Inhibition of metabolic activation of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone by limonene Mark, A. M.;L. T. Amy https://doi.org/10.1016/0304-3835(96)04252-8
  5. J. Chromatogr. v.828 Extraction and Purification of Perillyl Alcohol from Korean Orange Peel by Reversed-Phase High-Performance Liquid Chromatography Jung Y.A.;K.H. Row https://doi.org/10.1016/S0021-9673(98)00785-7
  6. Cancer Letters v.76 Inhibition of ubiquinone and cholesterol synthesis by the monoterpene perillyl alcohol Zhibin, R.;N. G. Michael https://doi.org/10.1016/0304-3835(94)90396-4
  7. Cancer Research v.57 Chemoprevention of colon carcinogenesis by dietary perillyl alcohol Reddy, B. S.;C-X. Wang;H. Samaha;R. Steele;R. Lubet;G. J. Kelloff;C. V. Rao
  8. Cancer Letters v.96 Chemotherapy of pancreatic cancer with the monoterpene perillyl alcohol Stark, M. J.;D. B. Yvette;H. M. Jamie;A. S. Ayoubi;L. C. Ramela https://doi.org/10.1016/0304-3835(95)03912-G
  9. Korean J. Chem. Eng. Chromatographic Analysis of Ceramide Ⅲ of Saccharomyces cerevisiae Kang, D.H.;M.S. Yeo;S.K. Kim;H.S. Yun;Y.M. Koo;K.H. Row
  10. Excel for Chemical Engineering Row, K. H.