DOI QR코드

DOI QR Code

Growth and Characteristics of SrBi2Nb2O9 Thin Films for Memory Devices

메모리 소자에의 응용을 위한 SrBi2Nb2O9 박막의 성장 및 전기적 특성

  • 강동훈 (고려대학교 재료공학과) ;
  • 최훈상 (고려대학교 재료공학과) ;
  • 이종한 (고려대학교 재료공학과) ;
  • 임근식 (고려대학교 재료공학과) ;
  • 장유민 (고려대학교 재료공학과) ;
  • 최인훈 (고려대학교 재료공학과)
  • Published : 2002.06.01

Abstract

$SrBi_2Nb_2O_9(SBN)$ thin films were grown on Pt/Ti/Si and p-type Si(100) substrates by rf-magnetron co-sputtering method using two ceramic targets, $SrNb_2O_6\; and \;Bi_2O_3$. The structural and electrical characteristics have been investigated to confirm the possibility of the SBN thin films for the applications to destructive and nondestructive read out ferroelectric random access memory(FRAM). For the optimum growth condition X-ray diffraction patterns showed that SBN films had well crystallized Bi-layered perovskite structure after $700^{\circ}C$ heat-treatment in furnace. From this specimen we got remnant polarization $(2P_r)$ of about 6 uC/$\textrm{cm}^2$ and coercive voltage $(V_c)$ of about 1.5 V at an applied voltage of 5 V. The leakage current density was $7.6{\times}10^{-7}$/A/$\textrm{cm}^2$ at an applied voltage of 5V. And for the NDRO-FRAM application, properties of SBN films on Si substrate has been investigated. From transmission electron microscopy (TEM) analysis, we found the furnace treated sample had a native oxide about 2 times thicker than the RTA treated sample and this thick native oxide layer had a bad effect on C-V characteristics of SBN/Si thin film. After $650^{\circ}C$ RTA process, we got the improved memory window of 1.3 V at an applied voltage of 5 V.

Keywords

References

  1. 川合知二, 工業調査會, 235 (1996)
  2. J.F. Scott and C.A. Paz de Araujo, Science 246, 1400 (1989) https://doi.org/10.1126/science.246.4936.1400
  3. C.K. Kwok and S.B. Desu, J. Mater. Res., 8, 339 (1993) https://doi.org/10.1557/JMR.1993.0339
  4. L.L. Boyer, N. Velasquez and J.T. Evans, Jpn. J. Appl. Phys., 36, 5799 (1997) https://doi.org/10.1143/JJAP.36.5799
  5. K. Watanabe, M. Tanaka, E. Sumitomo, K. Katori, H. Yagi and J.F. Scott, Appl. Phys. Lett., 73, 126 (1998) https://doi.org/10.1063/1.121705
  6. Integrated Ferroelectrics v.15 O. Auciello https://doi.org/10.1080/10584589708015712
  7. O. Auciello, Integrated Ferroelectrics, 15, 211 (1997) https://doi.org/10.1080/10584589708015712
  8. H.M. Duiker, P.D. Cuchiaro and L.K. McMillan, Jpn. J. Appl. Phys., 68, 5783 (1990) https://doi.org/10.1063/1.346948
  9. T. Mihara, H. Watanabe and C.A. Paz de Araujo, Jpn, J. Appl. Phy., 32, 4168 (1993) https://doi.org/10.1143/JJAP.32.4168
  10. C.A. Paz de Araujo, J.D. Cuchiaro, L.D. McMillan, M.C. Scott and J.F. Scott, Nature, 43, 627 (1995) https://doi.org/10.1038/374627a0
  11. B.H. Park, B.S. Kang, S.D. Bu and T.W. Noh, Nature, 401,682 (1999) https://doi.org/10.1038/44352
  12. U. Chon, G.C. Yi, and H.M. Jang, Appl. Phys. Lett., 78, N.5, 658 (2001) https://doi.org/10.1063/1.1333686
  13. G.P. Choi, J.H. Park, C.H. Lee, I.D. Kim, and H.G. Kim, Mat. Lett, 45, 08 (2000)
  14. H. Ishiwara, FED Journal, 7, 13 (1996)
  15. J.F. Scott, L. Kamnerdiner, M. Parris, S. Traynor, V. Ottanbachar, A. Shawbketh and W. C. Oliver, J. Appl. Phys., 64, 787 (1988) https://doi.org/10.1063/1.341925
  16. J.T. Evans and R. Womack, IEEE J. Solid State Circuits, 23, 610 (1998)

Cited by

  1. Polarization Characteristics of SBN Thin Film by RF Magnetron Sputtering vol.60, pp.6, 2011, https://doi.org/10.5370/KIEE.2011.60.6.1175