DOI QR코드

DOI QR Code

Physical Properties of the Al2O3 Thin Films Deposited by Atomic Layer Deposition

ALD법으로 제조된 Al2O3 박막의 물리적 특성

  • Kim, Jae-Bum (Department of Material Science and Engineering. Inha University) ;
  • Kwon, Duk-Ryel (Department of Material Science and Engineering. Inha University) ;
  • Oh, Ki-Young (Jusung Engineering Co. Ltd.) ;
  • Lee, Chong-Mu (Department of Material Science and Engineering. Inha University)
  • 김재범 (인하대학교 공과대학 재료공학부) ;
  • 권덕렬 (인하대학교 공과대학 재료공학부) ;
  • 오기영 (주성엔지니어링) ;
  • 이종무 (인하대학교 공과대학 재료공학부)
  • Published : 2002.06.01

Abstract

$Al_2O_3$ is a promising gate dielectric because of its high dielectric constant, high resistivity and low leakage current. Since $OH^-$ radical in $Al_2O_3$ films deposited by ALD using TMA and $H_2O$ degrades the good properties of $Al_2O_3$, TMA and $O_3$ were used to deposite $Al_2O_3$ films and the effects of $O_3$ on the properties of the $Al_2O_3$ films were investigated. The growth rate of the $Al_2O_3$ film under the optimum condition was 0.85 $\AA$/cycle. According to the XPS analysis results the $OH^-$ concentration in the $Al_2O_3$ film deposited using $O_3$ is lower than that using $H_2O$. RBS analysis results indicate the chemical formula of the film is $Al_{2.2}O_{2.8}$. The carbon concentration in the film detected by AES is under 1 at%. SEM observation confirms that the step coverage of the $Al_2O_3$ film deposited by ALD using $O_3$ is nearly 100%.

Keywords

References

  1. J.A.Aboaf, J. Electrochem. Soc., 114, 948 (1967) https://doi.org/10.1149/1.2426787
  2. R.A. Abbott, T.I. Kamins, Solid state Technol., 24, 182 (1981)
  3. K.H. Zaininger, A.S. Waxman, IEEE Trans. Electron Device, 16, 333 (1969) https://doi.org/10.1109/T-ED.1969.16753
  4. E. Dorre, H. Hubner, Alumina, Springer, Berlin, (1984)
  5. W.S. Yang, Y.K. Kim, S.-Y.Yang, J.H. Choi, H.S. Park, S.I. Lee, J.-B. Yoo, Surf. Coat. Technol., 131, 79 (2000) https://doi.org/10.1016/S0257-8972(00)00763-5
  6. W.N. Dossantos, P.I. Paulin, R. Taylor, J. Eur. Ceram. Soc, 18(7), 807 (1998) https://doi.org/10.1016/S0955-2219(98)80010-1
  7. M. Ishida, K. Sawada, S. Yamaguchi, T. Nakamura, T. Suzaki, Appl. Phys. Letts, 55, 56 (1989) https://doi.org/10.1063/1.101752
  8. E. Fredriksson, J.O. Carlson, J. Chem. Vapor Dep., 1, 333 (1993)
  9. C.J. Rang, J.S. Chun, W.J. Lee, Thin Solid Films, 189, 161 (1990) https://doi.org/10.1016/0040-6090(90)90036-D
  10. M. Ritala, H. Saloniemi, M. Leskela, T. Prohaska, G. Friedbacher, M. Grasserbauer, Thin Solid Films, 286, 54 (1996) https://doi.org/10.1016/S0040-6090(95)08524-6
  11. Y. Kim, S.M. Lee, C.S. Park, S.I. Lee, M.Y. Lee, Appl. Phys. Letts., 71, 3604 (1997) https://doi.org/10.1063/1.120454
  12. R. Matero, A. Rahtu, M. Ritala, M. Leskela, T. Sajavaara, Thin Solid Films, 368, 1 (2000) https://doi.org/10.1016/S0040-6090(00)00890-7
  13. Alexander E. Braun, Semiconductor International (October, 2001)
  14. J. Shepard, C. DEmic, P. Kozlowski, A. Chakrabarti, R. Jammy, Proceedings of the ALD Conference, Moterey, California, USA, May 14th 2001
  15. G.S. Higashi, C.G. Fleming, Appl. Phys. Letts., 55, 1963 (1989) https://doi.org/10.1063/1.102337
  16. J.D. Ferguson, A.W. Weimer, S.M. George, Thin Solid Films, 371, 95 (2000) https://doi.org/10.1016/S0040-6090(00)00973-1
  17. A.W. Ott, J.W. Klaus, J.M. Johnson, S.M. George, Thin Solid Films, 292, 135 (1997) https://doi.org/10.1016/S0040-6090(96)08934-1
  18. Jusung Engineering Co, Ltd., in house R&D data (unpublished)
  19. K.H. Hwang, S.J. Choi, J.D. Lee, Y.S. You, Y.K. Kim, H. S. Kim, C.L. Song and S.I. Lee, ALD Symposium, Monterey, California, USA, 14th May, 2001