DOI QR코드

DOI QR Code

Characteristics and Formation of Thermal Oxidative Film Silicon Carbide for MOS Devices

MOS 소자용 Silicon Carbide의 열산화막 생성 및 특징

  • 오경영 (동신대학교 공과대학 세라믹공학과) ;
  • 이계홍 (동신대학교 공과대학 세라믹공학과) ;
  • 이계홍 (동신대학교 대학원 물리과) ;
  • 장성주 (동신대학교 대학원 물리과)
  • Published : 2002.05.01

Abstract

In order to obtain the oxidation layer for SiC MOS, the oxide layers by thermal oxidation process with dry and wet method were deposited and characterized. Deposition temperature for oxidation layer was $1100^{\circ}C$~130$0^{\circ}C$ by $O_2$ and Ar atmosphere. The oxide thickness, surface morphology, and interface characteristic of deposited oxide layers were measurement by ellipsometer, SEM, TEM, AFM, and SIMS. Thickness of oxidation layer was confirmed 50nm and 90nm to with deposition temperature at $1150^{\circ}C$ and $1200{\circ}C$ for dry 4 hours and wet 1 hour, respectively. For the high purity oxidation layer, the necessity of sacrificial oxidation which is etched for the removal of the defeats on the wafer after quickly thermal oxidation was confirmed.

Keywords

References

  1. H.I. Matsunami, Electronics and Communications in Japan. Part 2., 81 (7), 38 (1998) https://doi.org/10.1002/(SICI)1520-6424(199807)81:7<38::AID-ECJA5>3.0.CO;2-0
  2. M. Ventra and S.T. Pantelides, J. Electronic materials., 26(3), 353 (2000)
  3. M. Eickhoff, N. Vouroutzis, A. Nielsen, G. Krotz, and J. Stoemenos, J. electrochemical society., 148(6), G336 (2001) https://doi.org/10.1149/1.1370972
  4. E.F.Opila, J.Am. Ceram.Soc., 82(3), 625 (1999) https://doi.org/10.1111/j.1151-2916.1999.tb01810.x
  5. K. Yamashita, M. Iwamoto, and T. Hino, Jpn. J. Appl. Phsy., 20(8), 1429 (1981) https://doi.org/10.1143/JJAP.20.1429
  6. P.K. Nauta and M.W. Hillen, J. Appl. Phys., 49(5), 2862 (1978) https://doi.org/10.1063/1.325168
  7. A.G. Tangena, J. Middelhoek, and N.F. de Rooij, Jpn. J. Appl. phys., 49 (5), 2876 (1978) https://doi.org/10.1063/1.325170
  8. K. Yamashita and T. Hino, Jpn. J. Appl. Phys., 21 (10), 1437 (1982) https://doi.org/10.1143/JJAP.21.1437
  9. A. Goetzberger and J.C. Irvin, IEEE. Trans. Electron Devices., 15, 1009 (1968) https://doi.org/10.1109/T-ED.1968.16554
  10. E.I. Goldman, A.G. Zhdan, and N. F. Kukharsksya, semicconductors., 33(3), 308 (1999) https://doi.org/10.1134/1.1187685
  11. M. Bakowski, U. Gustafsson, and Z. Ovuka, Microelectron. Reliab., 38 (3), 381 (1998) https://doi.org/10.1016/S0026-2714(97)00061-9
  12. H. Kobayashi, T. Sakurai, M. Nishiyama, and Y. Nishioka, Appl. phys. Let., 76(16), 2336 (2001)
  13. R.C. Jaeger, Introduction to Microelectronic Fabrication Volume V, P. 29
  14. B.E. Deal and A. S. Grove, J. Appl. Phys., 36, 3770 (1965) https://doi.org/10.1063/1.1713945
  15. A. Rys, N. Singh, and M. Cameron, J. Electrochem. Soc, 142(4), 1318 (1995) https://doi.org/10.1149/1.2044170
  16. Inter-university Semiconductor Research Center, SEOUL NATIONAL UNIVERSITY.,
  17. A. Suzuki, H. Ashida, and N. Furui, Jpn. J. Appl. Phys., 21 (4), 579 (1982) https://doi.org/10.1143/JJAP.21.579
  18. J. Anthony powell, David J. Larkin, and Phillip B. ABEL, J. Electronic Materials., 24(4), 295 (1995) https://doi.org/10.1007/BF02659690
  19. M.B. Johnson, M.E. Zvanut, and Otha Fichardson, J. electronic materials., 29 (3), 368 (2000) https://doi.org/10.1007/s11664-000-0079-3
  20. L.A. Lipkin and J.W. Palmour, J. Electronic Materials., 25(5), 909 (1995) https://doi.org/10.1007/BF02666657
  21. M.K. Das, J.A. Cooper, JR., and M.R. Melloch, J. electronic Materials., 27(4), 353 (1998) https://doi.org/10.1007/s11664-998-0414-7
  22. L. zhou, V. Audurier, and P. Pirouz, J. Electrochem. Soc, 144(6), L161 (1997) https://doi.org/10.1149/1.1837711
  23. J. Boo, S. Lee, K. Yu, M. Sung, and Y.Kim, surface and coatings Tech., 131, 147 (2000) https://doi.org/10.1016/S0257-8972(00)00820-3