DOI QR코드

DOI QR Code

Preparation of Nanocrystalline TiO2 Coated Coal Fly Ash by Dropping Method of Coating Agent and Photocatalytic Characterization

페복제 적하법에 의한 나노 결정 TiO2 피복 석탄회의 제조와 광촉매 특성

  • 유연태 (한국지질자원연구원 자원활용연구부) ;
  • 최영윤 (한국지질자원연구원 자원활용연구부) ;
  • 김병규 (한국지질자원연구원 자원활용연구부)
  • Published : 2002.05.01

Abstract

$TiO_2$-coated fly ash was synthesized by dropping method of coating agent in order to get $TiO_2$ coating layer with high photocatalytic activity on the surface of coal fly ash. The properties of the $TiO_2$ coating layer such as morphology, crystal structure, crystal size and photocatalytic activity were compared with those of the $TiO_2$-coated fly ash prepared by the traditional method of precipitation. $TiCl_4$ aqueous solution was used as a titanium stock solution and $NH_4HCO_3$ was used as a precipitant. The $TiO_2$ coating layer obtained by dropping method of coating agent was more uniform than that coated by precipitation. However, the crystal of $TiO_2$ coated by dropping method of coating agent was easy to grow by heat treatment because of the small primary particle size and bulky morphology, and its photocatalytic activity was consequently lower than that of the $TiO_2$ coated by precipitation. The $TiO_2$ coating layer obtained by both methods had a crystal structure of anatase, and the temperature of phase transformation into rutile was 90$0^{\circ}C$. The minimum crystal size of $TiO_2$ for the highest photocatalytic activity was found to be about 10nm.

Keywords

References

  1. K. Tanaka, Mario F.V. Capule and T. Hisanaga, Chemistry Letters, 187(1, 2), 73 (1991) https://doi.org/10.1016/0009-2614(91)90486-S
  2. T. Torimoto, Y. Okawa, N. Takeda and H. Yoneyama, Journal of Photochemistry and Photobiology A ; Chemistry 103, 153 (1997) https://doi.org/10.1016/S1010-6030(96)04503-0
  3. H. Matsubara, M. Takada, S. Koyama, K. Hashimoto and A. Fujishima, Chemistry Letters, 767 (1995) https://doi.org/10.1246/cl.1995.767
  4. D. Beydoun and R. Amal, J. Phys. Chem. B, 104(18), 4387 (2000) https://doi.org/10.1021/jp992088c
  5. R.L. Pozzo, M. Baltanas, A. Cassano, Catal. Today, 39, 219 (1997) https://doi.org/10.1016/S0920-5861(97)00103-X
  6. S. Sampath, H. Uchida and H. Yoneyama, J. Catal., 149, 189 (1994) https://doi.org/10.1006/jcat.1994.1284
  7. Y. Hsien, C. Chang, Y. Chen and S. Cheng, Applied Catalysis B : Environmental, 31, 241 (2001) https://doi.org/10.1016/S0926-3373(00)00283-6
  8. H. Yamashita, M. Honda, Y. Ichihashi, M. Anpo, T. Hirao and N. Itoh, J. Phys. Chem. B, 102(52), 10707 (2000) https://doi.org/10.1021/jp982835q
  9. Y.T. Yu, Y.Y. Choi, B.G. Kim and H.J. Lee, Korea Journal of Materials Research, 11 (8), 690 (2001)
  10. H. Nakamura, Y. Chen, K. Kimura, H. Takeyama and H. Hirosue, J. Ceramic Society of Japan, 105(11), 1037 (1997) https://doi.org/10.2109/jcersj.105.1037
  11. V.S. Zaitsev, D.S. Filimonov, LA. Presnyakov. R.J. Gambino and B. Chu, J. Colloid & Interface Science, 212,49 (1999) https://doi.org/10.1006/jcis.1998.5993
  12. J.A. Langford and A. J.C. Wilson, J. Appl. Cryst., 11, 102(1978) https://doi.org/10.1107/S0021889878012844
  13. L.H. Edelson and A.M. Glaeser, J. Am. Ceram. Soc., 71 (4), 225 (1988) https://doi.org/10.1111/j.1151-2916.1988.tb05852.x
  14. M. Anpo, T. Shima, S. Kodama and Y. Kubokawa, J. Phys. Chem., 91, 4305 (1987) https://doi.org/10.1021/j100300a021
  15. H. Harada and T. Ueda, Chem. Phys. Lett, 106, 229 (1984) https://doi.org/10.1016/0009-2614(84)80231-6
  16. L. Cao, Z. Gao, S.L. Suib, T.N. Obee, S.O. Hay and J.D. Freihaut, Journal of Catalysis 196, 253 (2000) https://doi.org/10.1006/jcat.2000.3050
  17. I. Sopyan, M. Watanabe, S. Murasawa, K. Hashimoto and A. Fujishima, Chemistry Letters. 69 (1996) https://doi.org/10.1246/cl.1996.69
  18. H. Kominami, J. Kato, M. Kohmo, Y. Kera and B. Ohtani, Chemistry Letters, 1051 (1996) https://doi.org/10.1246/cl.1996.1051
  19. J.F. Banfield, B.L. Bischoff and M.A. Anderson, Chem. Geol., 110,211 (1993) https://doi.org/10.1016/0009-2541(93)90255-H