DOI QR코드

DOI QR Code

Effect of Tota1 Saponin from Red Ginseng on Acvtivities of Antioxidant Enzymes in Pregnant Rats

홍삼 사포닌이 수태중인 흰쥐의 항산화 효소활성에 미치는 영향

  • Song, Yong-Bum (Korea Tobacco & Ginseng Central Research Institute) ;
  • Kwak, Yi-Seong (Korea Tobacco & Ginseng Central Research Institute) ;
  • Park, Ki-Hyun (Korea Tobacco & Ginseng Central Research Institute) ;
  • Chang, Sung-Keun (Department of Chemistry, Division of Applied Sciences, Soonchunhyang University)
  • 송용범 (한국담배인삼공사 중앙연구원) ;
  • 곽이성 (한국담배인삼공사 중앙연구원) ;
  • 박기현 (한국담배인삼공사 중앙연구원) ;
  • 장성근 (순천향대학교 응용과학부 화학과)
  • Published : 2002.09.01

Abstract

Pregnancy is a physiological state accompained by a high energy demand of many bodily functions and an increased oxygen requirement. Because of the increased intake and utilization of oxygen, increased levels of oxidative stress would be expected. So we observed the activities of the hepatic antioxidant enzymes from rat treated with total saponin from the red ginseng against free raicals produced in pregnant rats. The activity of superoxide dismutase (SOD) in the control group was slightly decreased during pregnancy, and SOD activity in total saponin treated group was not observed any siginificant change compared with the control group. The activities of glutathione peroxidase (GPX), glutathione reductase (GRD) and catalase in the control group have shown the decreasing tendency during pregnancy, whereas the activities of GRD and catalase in total saponin treated group showed significant increased tendency compared with the control group. GPX activity in total saponin treated group was slightly decreased tendnency compared with the control group. The activity of glutathione-S-transferase (GST) in the control group was increased to keep the state of homaeostasis tendency in pregnant rats. On the other hand, the activity of GST after total saponin treatment was increased than control group. Activity of all enzymes in the control group and total saponin treated group recovered the normal level after delivery of rats. In spite of the physiological changes in vivo, the inflaunce of total saponin on activaties of hepatic antioxidant enzyme in pregnant rats seems to be regulated the biological homeostatic adaptation mechanism which protects the maternal liver aganist oxygen induced toxicity

수태는 많은 신체적인 기능들의 높은 에너지 요구 및 산소요구량 증가로 인하여 생리적인 변화를 수반한다. 때문에 산소 섭취량 및 이용이 증가하여 산화적인 스트레스의 증가를 기대할 수 있다. 수태중에 발생되는 free radical에 대하여 홍삼사포닌 투여가 간 항산화효소의 활성에 미치는 영향을 연구하였다. 수태중에 superoxide dismutase(SOD)의 활성은 전반적으로 감소하는 경향을 나타냈으며, 사포닌 투여군은 대조군에 비하여 유의한 변화가 관찰되지 않았다. 그리고 glutathione peroxidase(GPX) , gluthatione reductase (GRD)와 catalase의 활성도는 수태중에 감소하는 경향을 나타냈으며, 반면에 사포닌 투여군은 대조군 비하여 GRD 및 catalase의 활성도에 유의한 변화를 나타냈다. 사포닌 투여군의 GPX의 활성도는 대조군에 비하여 감소하는 경향이 다소 적게 나타났다. 수태중 대조군의 glutathione-S-transferase (GST) 활성도는 항상성을 유지하기 위해 증가하는 경향을 나타냈으며, 사포닌 투여군도 대조군에 비하여 이 효소의 활성도가 더욱 증가하는 경향을 나타냈다. 분만 후 대조군 및 사포닌 투여군은 정상수준으로 회복되었다. 수태와 같은 생체변화에도 불구하고 수태한 흰쥐의 간 항산화 효소활성에 대한 사포닌의 영향은 산소독성에 대하여 모체간을 보호해주는 생리적 항상성의 적응메카니즘에 의하여 조절되는 것으로 보인다.

Keywords

References

  1. Coyle, J. T. and Puttfarcken, P. : Science. 262, 689 (1993) https://doi.org/10.1126/science.7901908
  2. Fridovich, I. : Arch. Biochem. Biophys. 247, 1 (1986) https://doi.org/10.1016/0003-9861(86)90526-6
  3. Hawlliwell, B. and Gutteridge, J.M. C. : In Free Radicals in Bilogy and Medicine (Clarendon Press, Oxford, ed). Vol II. p.1 (1989)
  4. Carmen, V. P. : CRC menbrane lipid oxidation. CRC press, vol. 1. p.109 (1993)
  5. Wang, Y. and Walsh, S. W. : J. Soc. Gynecol. Invest. 3, 179 (1996) https://doi.org/10.1016/1071-5576(96)00015-9
  6. Osimitz, T. G. and Kulkarmi, A. P. : Biochem. Biophys. Res. Comm. 109, 1164 (1982) https://doi.org/10.1016/0006-291X(82)91899-X
  7. Archer, S. L., Nelson, D. P. and Weir, E. K : J. Appl. Physiol. 67, 1903 (1989) https://doi.org/10.1152/jappl.1989.67.5.1903
  8. Avissar, N., Eisenmann, C., Breen, J. G., Horowitz, S., Miler, J. G. and Cohen, H. J. : Am. J. Physiol. 267, E68 (1994)
  9. Agrwal, P. and Laloraya, M. M. : Am. J. Physiol. 236, E386 (1979)
  10. Uotila, J. T., Tuimala, R. J., Arino, T. M., Pyykko, K. A. and Ahotupa, M. O. : Br J Obestet Gynecol. 100, 270 (1993) https://doi.org/10.1111/j.1471-0528.1993.tb15242.x
  11. Haya, M. L. and Amos, Ar. : Comp. Biochem. Physiol. 118C, 353 (1997)
  12. Song, Y. B., Byoun, K. E. and Chang, S. K. : Korean Biochem. J. 27, 161 (1994).
  13. Han, B. H., Park, M. H. and Han, Y. N. : Korean Biochem. J. 18, 337 (1985)
  14. Choi, J. H. and Oh, S. K : Korean J Food Sci. Technol. 17, 506 (1985) https://doi.org/10.1021/es00114a600
  15. Chen, X., Li, Y. J., Deng, H. W, Yang, B. c., Li, D. Y. and Shen, N. : Biomed. Biochem. Acta. 46(8-9), 646 (1987)
  16. Dong, E., Yokazawa, T., Kashiwagi, H., Hattori, M., Watanabe. H. and Oura, H. : Natural Medicines., 50(2), 128 (1996).
  17. Dong, E., Yokazawa, T., Kashiwagi, H., Hattori, M., Watanabe. H. and Oura, H. : Natural Medicines., 50(2), 128 (1996).
  18. Bark, H. J., Lindeseg, J. R. and Weisbroth, S. H. : Pharmacol. Ther. 44, 297 (1989) https://doi.org/10.1016/0163-7258(89)90069-7
  19. Hogeboom, G. H. : Methods Enzymol. 1, 16 (1955). https://doi.org/10.1016/0076-6879(55)01007-0
  20. Markwell, M. A. K., Haas, S. M., Tolbert, N. E. and Biber, L. L. : Methods Enzymol. 72, 296 (1981). https://doi.org/10.1016/S0076-6879(81)72018-4
  21. Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall,R T. :J. Biol. Chem. 193, 265 (1951)
  22. McCord, J. R. Colby, M. D. and Fridovich, I. : J.. Biol. Chem. 231, 6049 (1972)
  23. Tappel, A. L. : Methods Enzymol. 52, 506 (1978) https://doi.org/10.1016/S0076-6879(78)52055-7
  24. Pinto, M. C., Mata, A. M. and Lopes-Barea, J. : Arch Biochem Biophys. 228, 1 (1984) https://doi.org/10.1016/0003-9861(84)90040-7
  25. Abei, H. : In Methods of Enzymatic Analysis(Bergmeyer, H. U. ed), Academic press, New York. vol 1. p.674 (1974)
  26. Habig,W H., Pabest., M. J. and Jakoby, W. B. :J. Biol. Chem. 249, 7130 (1974).
  27. Coyle, J. T. and Puttarcken, P. : Science. 262, 689 (1993) https://doi.org/10.1126/science.7901908
  28. McCord, J. R. and Fridovich, I. : J. Biol. Chem. 244, 6049 (1969)
  29. Konstantinova, G. and Russanov, E. M. : Research in veterinary Science. 45, 287 (1988)
  30. Chang, M. S., Lee, S. G. and Rho. H. G. : Phytotherpy Res. 13, 641 (1999) https://doi.org/10.1002/(SICI)1099-1573(199912)13:8<641::AID-PTR527>3.0.CO;2-Z
  31. Calabrese, E. J. and Canada, A. T. : Pharmcol. Ther. 44, 297 (1989) https://doi.org/10.1016/0163-7258(89)90069-7
  32. Kim, D. Y. and Chang, J. C. : Korean J. Ginseng Sci. 22, 1 (1998) https://doi.org/10.3346/jkms.2007.22.1.1
  33. Jakoby, W. B. : In Enzymatic Basis of Detoxication, Academic, press. New York. Vol I p.331 (1980)
  34. Charless, H. and Willians, J. R. : In The Enzymes. Academic press. New York. Vol XIII p.90 (1976)
  35. Heffner, J. E. and Repeine, J. E. : Am. Rev. Repair. Dis. 140, 531 (1989)
  36. Jakoby, W. B. : In Enzymatic Basis of Detoxication, Academic press. New York. Vol II p.63 (1980)
  37. Zubay, G. L. : In Biochemistry (Bob Rogers ed), AddisonWesley Publishing Company, Inc. U.S.A p.881 (1983)

Cited by

  1. Effect of Fermented Herbal Mixture against Oxidative Stress in HepG2 and PC12 Cells vol.45, pp.7, 2016, https://doi.org/10.3746/jkfn.2016.45.7.1057