Characterization of amorphous Sb-Bi-Te thin films as a function of Bi concentration

Bi 농도에 따른 비정질 Sb-Bi-Te 박막의 특성

  • ;
  • D. Mangalaraj (Thin Film Lab., Department of Physics, Bharathiar University) ;
  • 이재형 (성균관대학교 전기전자 및 컴퓨터공학부) ;
  • ;
  • 이준신 (성균관대학교 전기전자 및 컴퓨터공학부)
  • Published : 2002.04.01

Abstract

Thin films of $Sb_{2-x}Bi_xTe_3$ (x = 0.0, 0.5, and 1.0) are grown by vacuum evaporation. XRD analysis shows the amorphous nature of the films, and the composition studies confirm the stoichiometry of the films. Microstructural parameters of the films have been calculated and used to explain the electrical and optical properties of the films. It is observed that the carrier type has changed from p- to n-type at higher concentration (x = 1.0) of Bi. The resistivity of the films decreases rapidly with the increase of Bi concentration. However, the refractive index and optical band gap of the films increase with the Bi concentration.

진공 증착한 $Sb_{2-x}Bi_xTe_3$ 박막은 Bi 농도에 관계없이 비정질 형태로 성장되었고, XPS 분석 결과 증착 물질과 거의 유사한 조성을 가짐을 알 수 있었다. 또한 박막의 광학적, 전기적 특성을 설명하기 위해 여러 미세구조 파라미터들을 계산하였다. 한편, 박막 내 Bi 농도가 증가함에 따라 전기 비저항은 급격히 감소하였고, 특히 높은 Bi 농도(x=1.0)에서는 전도 특성이 p-type에서 n-type으로 변화되었다. 또한 $Sb_{2-x}Bi_xTe_3$ 박막의 굴절 지수 및 광학적 밴드 갭은 Bi 농도에 따라 증가하였다.

Keywords

References

  1. Philos. Mag. v.22 N. F. Mott
  2. J. Non-Cryst. Solids v.2 H. Fritzsche;S. R. Ovshinsky https://doi.org/10.1016/0022-3093(70)90156-0
  3. J. KIEEME v.6 M. W. Lee;W. H. Kang;C. M. Park;K. A. Lee
  4. J. KIEEME v.10 H. S. Kim;H. B. Chung
  5. J. Phys. D: Appl. Phys. v.32 P. Arun;A. G. Vedeshwar;N. C. Mehra https://doi.org/10.1088/0022-3727/32/3/001
  6. Physics of Optical Recording K. Schwartz
  7. J. Information Recording v.22 K. Schwartz
  8. A Guide to Optical Storage Technology J. A. McCormic
  9. Bull. Mater. Sci. v.18 L. K. Malhotra;Y. Sripati;G. B. Reddy https://doi.org/10.1007/BF02744807
  10. Phil. Mag. v.22 E. A. Davis;N. F. Mott https://doi.org/10.1080/14786437008221061
  11. J. Non-Cryst. Solids v.59;60 S. Okano;M. Suzuki;T. Imura;N. Fukuda;A. Hiraki
  12. J. Mater. Sci. Lett. v.11 R. Misra;G. Goel;A. K. Agnihotri;A. Kumar https://doi.org/10.1007/BF00741424
  13. J. Appl. Phys. v.51 N. Tohge;T. Minami;Y. Yamamoto;M. Tanaka https://doi.org/10.1063/1.327710
  14. J. Non-Cryst. Solids v.95;96 N. Tohge;H. Matsuo;T. Minami
  15. Phys. Rev. B v.36 J. C. Phillips https://doi.org/10.1103/PhysRevB.36.4265
  16. Phys. Rev. Lett. v.57 S. R. Elliot;A. T. Steel https://doi.org/10.1103/PhysRevLett.57.1316
  17. J. Non-Cryst. Solids v.114 J. Storiopoulous;W. Fuhs https://doi.org/10.1016/0022-3093(89)90080-X
  18. J. Non-Cryst. Solids v.57 J. C. Philips https://doi.org/10.1016/0022-3093(83)90424-6
  19. Solid State Commun. v.53 J. C. Philips;M. F. Thorpe https://doi.org/10.1016/0038-1098(85)90381-3
  20. J. Non-Cryst. Solids v.103 K. Tanaka https://doi.org/10.1016/0022-3093(88)90428-0
  21. Phys. Rev. B. v.39 K. Tanaka https://doi.org/10.1103/PhysRevB.39.1270
  22. J. Non-Cryst. Solids v.242 V. Pamukchieva;A. Szekeres;E. Savova;E. Vlaikova https://doi.org/10.1016/S0022-3093(98)00794-7
  23. J. Non-Cryst. Solids v.265 M. M. Wakkad;E. K. Shokr;S. H. Mohamed https://doi.org/10.1016/S0022-3093(99)00882-0
  24. J. Appl. Phys. v.57 N. Tohge;T. Minami;Y. Yamamoto;M. Tanaka https://doi.org/10.1063/1.327710
  25. J. Phys. Chem. Solids v.7 E. Mooser;W. B. Pearson https://doi.org/10.1016/0022-3697(58)90181-1
  26. J. Non-Cryst. Solids v.69 K. L. Bhatia;G. Parthasarathy;E. S. R. Gopal https://doi.org/10.1016/0022-3093(85)90020-1
  27. J. Non-Cryst. Solids v.44 T. Takahashi https://doi.org/10.1016/0022-3093(81)90026-0
  28. J. Non-Cryst. Solids v.65 T. Takahashi;T. Sagawa;H. Hamanaka https://doi.org/10.1016/0022-3093(84)90051-6
  29. Physics of Thin Films O. S. Heavens;G. Hass(ed.);R.E. Thun(ed.)
  30. Phys. Rev. Lett. v.24 N.H. Brodsky;P.J. Stiles https://doi.org/10.1103/PhysRevLett.24.230
  31. Phys. Rev. Lett. v.28 M. Kastner https://doi.org/10.1103/PhysRevLett.28.355