Pd/Ge/Pd/Ti/Au Ohmic Contact for Application to AlGaAs/GaAs HBT

AIGaAs/GaAs HBT 응용을 위한 Pd/Ge/Pd/Ti/Au 오믹 접촉

  • Published : 2002.04.01

Abstract

Pd/Ge/Pd/Ti/Au ohmic contact to n-type InGaAs was investigated with rapid thermal annealing conditions. Minimum specific contact resistivity of $1.1\times10^{-6}\Omega\textrm{cm}^2$ was achieved after annealing at $400^{\circ}C$/10sec, and a ohmic performance was degraded at higher annealing temperature due to the chemical reaction between the ohmic contact materials and the InGaAs substrate. However, non-spiking planar interface and relatively good ohmic contact($high-10^{-6};{\Omega}\textrm{cm}^2$) were maintained. This ohmic contact system is expected to be a promising candidate for compound semiconductor devices.

N형 InGaAs에 대한 Pd/Ge/Pd/Ti/Au 오믹 접촉의 급속 열처리 조건에 따른 오믹 특성을 조사하였다. $450^{\circ}C$까지의 열처리에 의해 우수한 오믹 특성을 나타내어 $400^{\circ}C$/10초의 급속 열처리 후에 최저 $1.1\times10^{-6}\Omega\textrm{cm}^2$의 접촉 비저항을 나타내었다. $425^{\circ}C$ 이상의 열처리 후에 접촉 비저항이 점점 증가하여 $450^{\circ}C$에서는 오믹 재료와 InGaAs의 반응에 의해 오믹 특성의 열화가 나타났다. 그러나 high-$10^{-6}\Omega\textrm{cm}^2$ 정도의 비교적 우수한 오믹 특성을 유지하였고, 양호한 표면 및 계면이 얻어져 화합물 반도체 소자에의 응용 가능성이 충분한 것으로 판단된다.

Keywords

References

  1. J. Vac. Sci. Technol. A v.12 M. W. Cole;W. Y. Han;L. M. Casas;D. W. Eckart;K. A. Jones https://doi.org/10.1116/1.578980
  2. J. Vac. Sci. Technol. B v.10 W. L. Chen;J. C. Cowles;G. I. Haddad;G. O. Munns;K. W. Eisenbeiser;J. R. East https://doi.org/10.1116/1.586067
  3. Appl. Phys. Lett. v.71 I.-H. Kim;S. H. Park;T.-W. Lee;M.-P. Park https://doi.org/10.1063/1.119421
  4. 한국진공학회지 v.7 김일호;박성호;김좌연;이종민;이태우;박문평
  5. Jpn. J. Appl. Phys. v.37 I.-H. Kim;S. H. Park;J.-W. Kim;J.-M. Lee;T.-W. Lee;M.-P. Park
  6. J. Appl. Phys. v.79 P. H. Hao;L. C. Wang;Fei Deng;S. S. Lau;J. Y. Cheng https://doi.org/10.1063/1.361788
  7. Appl. Phys. Lett. v.54 L. C. Wang;S. S. Lau;E. K. Hsieh;J. R. Velebir https://doi.org/10.1063/1.101032
  8. Appl. Phys. Lett. v.48 E. D. Marshall;W. X. Chen;C. S. Wu;S. S. Lau;T. F. Keuch https://doi.org/10.1063/1.96498
  9. Phys. Rev. B v.32 J. Tersoff https://doi.org/10.1103/PhysRevB.32.6968
  10. Appl. Phys. Lett. v.23 K. Kajiyama;Y. Mizushima;S. Sakata https://doi.org/10.1063/1.1654957
  11. Appl. Phys. Lett. v.60 L. C. Wang;T. Z. Li;M. Kappes;S. S. Lau;D. M. Hwang;S. A. Schwarz;T. Sands https://doi.org/10.1063/1.106794
  12. J. Electron. Mater. v.19 R. Bruce;D. Clark;S. Eicher https://doi.org/10.1007/BF02733810
  13. J. Appl. Phys. v.68 L. C. Wang;X. Z. Wang;S. N. Hsu;S. S. Lau;P. S. D. Lin;T. Sands;S. A. Schwarz;D. L. Plumton;T. F. Keuch
  14. Appl. Phys. Lett. v.60 L. R. Zheng;S. A. Wilson;D. J. Lawrence;S. I. Rudolph;S. Chen;G. Braunstein https://doi.org/10.1063/1.106491
  15. Electron. Lett. v.32 L. C. Wang;M.-H. Park;H. A. Jorge;I. H. Tan;F. Kish https://doi.org/10.1049/el:19960224
  16. IEEE Electron Device Lett. v.7 W. X. Chen;S. C. Hsueh;P. K. L. Yu;S. S. Lau https://doi.org/10.1109/EDL.1986.26443
  17. J. Appl. Phys v.79 P. H. Hao;L. C. Wang;J. C. P. Chang;H. C. Kuo;J. M. Kuo https://doi.org/10.1063/1.361191
  18. J. Appl. Phys. v.62 E. D. Marshall;B. Zhang;L. C. Wang;P. F. Jiao;W. X. Chen;T. Sawada;S. S. Lau;K. L. Kavanagh;T. F. Fuch https://doi.org/10.1063/1.339705
  19. J. Appl. Phys. v.67 C. J. PalmstrΦm;S. A. Schwarz;E. Yablonovitch;J. P. Harbison;C. L. Schwarz;L. T. Florez;T. J. Gmitter;E. D. Marshall;S. S. Lau https://doi.org/10.1063/1.345258