DOI QR코드

DOI QR Code

The Effect of Incoherent Pumping in Electromagnetically Induced Absorption

전자기 유도 흡수에서의 비결맞음 펌핑 효과

  • Moon, Han-Sub (Center for Information and Telecommunication Standards, Korea Research Institute of the Standards and Science) ;
  • Kim, Sook-Yung (Dept. of Physics Education, Korea National University of Education) ;
  • Kim, Kyung-Dae (Dept. of Physics Education, Korea National University of Education) ;
  • Lee, Chung-Hee (Dept. of Physics Education, Korea National University of Education) ;
  • Lee, Rim (Dept. of Physics Education, Korea National University of Education) ;
  • Kim, Haeng-Hwa (Dept. of Physics Education, Korea National University of Education) ;
  • Kim, Joong-Bok (Dept. of Physics Education, Korea National University of Education)
  • 문한섭 (한국표준과학연구원 정보통신표준센터) ;
  • 김수경 (한국교원대학교 물리교육과) ;
  • 김경대 (한국교원대학교 물리교육과) ;
  • 이충희 (한국교원대학교 물리교육과) ;
  • 이림 (한국교원대학교 물리교육과) ;
  • 김행화 (한국교원대학교 물리교육과) ;
  • 김중복 (한국교원대학교 물리교육과)
  • Published : 2002.10.01

Abstract

We have studied the effects of incoherent pumping on EIA at the transition between the $F_g=2$ ground state and the $F_e=3$ excited state in $^{85}Rb\;D_1$-line. Generally, the studies about EIA have been done in the cycling transition, where the population has no loss to other states. In the case of EIA by using the $^{85}Rb\;D_1$ transition line, the population is transferred to the other hyperfine state due to optical pumping. We incoherently pumped the atoms from $F_g=3\;to\;F_g=2$ with the pumping beam, which is resonant at the transition from $F_g=3\;to\;F_g=2$. We were able to observe the effects of incoherent pumping depending on the power and the polarization of the pumping beam.

$^85Rb\;D_1$ 전이선의 바닥준위 $F_g$=2에서 여기준위 $F_e$=3 전이를 이용하여 열린 원자계에서의 전자기 유도 흡수 현상을 관측하고, 전자기 유도 흡수에서의 비결맞음 펌핑 효과를 조사했다. 비결맞음 광원의 편광과 세기의 변화에 따른 전자기 유도 흡수에 대한 연구를 통해 비결맞음 광원의 편광에 따라서 자기부준위들 사이의 원자밀도 분포의 변화를 유도할 수 있고, 이러한 원자밀도 재분포 효과에 의해서 전자기 유도 흡수의 정도가 달라짐을 확인하였다

Keywords

References

  1. Phys. Today v.50 no.7 Electromagnetically induced transparency S. E. Harris
  2. Phys. Rev. Lett. v.66 no.1 Observation of electromagnetically induced transparency K. J. Boller;A. Imamoglu;S. E. Harris https://doi.org/10.1103/PhysRevLett.66.2593
  3. J. Korea Phys. Soc. v.35 no.3 Electromagnetically Induced Transparency in an ideal three level system in 87Rb Atoms H. S. Moon;H. A. Kim;B. S. Kim;J. B. Kim
  4. Appl. Phys. Lett. v.76 no.22 All-optical wavelength converter and switch based on electromagnetically H. Schmidta;R. J. Ram https://doi.org/10.1063/1.126620
  5. Phys. Rev. Lett. v.84 no.18 Coherence Switching in a Four-Level System: Quantum Switching B. S. Ham;P. R. Hemmer https://doi.org/10.1103/PhysRevLett.84.4080
  6. NATURE v.409 Observation of coherent optical information storage in an atomic medium using halted light pulses Chien Liu;Zachary Dutton;Cyrus H. Behroozi;Lene Vestergaard Hau https://doi.org/10.1038/35054017
  7. Phys. Rev. A v.57 no.4 Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor A. M. Akulshin;S. Barreiro;A. Lezama https://doi.org/10.1103/PhysRevA.57.2996
  8. Phys. Rev. A v.59 no.6 Electromagnetically induced absorption A. Lezama;S. Barreiro;A. M. Akulshin https://doi.org/10.1103/PhysRevA.59.4732
  9. Phys. Rev. A v.61 no.1 Electromagnetically induced absorption in a four-state system A. V. Taichenachev;A. M. Tumaikin;V. I. Yudin
  10. Phys. Rev. A v.61 no.1 Coherent two-field spectroscopy of degenerate two-level systems A. Lezama;S. Barreiro;A. Lipsich;A. M. Akulshin
  11. Phys. Rev. Lett. v.83 no.21 Steep anomalous dispersion in coherently prepared Rb vapor A. M. Akulshin;S. Barreiro;A. Lezama https://doi.org/10.1103/PhysRevLett.83.4277
  12. Phys. Rev. A v.61 no.1 Absorption spectra of driven degenerate two-level atomic systems A. Lipsich;S. Barreiro;A. M. Akulshin;A. Lezama
  13. J. Phys. B v.34 Dependence of Electromagnetically Induced Absorption on two combinations of the orthogonal polarized beams Mirang Kwon;Kyoungdae Kim;Han Seb Moon;Hyun Deok Park;Jung Bog Kim https://doi.org/10.1088/0953-4075/34/15/302
  14. J. Korea Phys. Soc. v.38 no.6 Measurements of normal and abnormal dispersions in coherently driven Cs vapors Kyoungdae Kim;Mirang Kwon;Han Seb Moon;Hyun Deok Park;Jung Bog Kim https://doi.org/10.1103/PhysRevLett.83.4277
  15. Progress in Optics v.35 E. Arimondo;E. Wolf(ed.) https://doi.org/10.1016/S0079-6638(08)70531-6
  16. Jpn. J. Appl. Phys. v.39 no.1 Amplification without Inversion in the Four-Level N-Type of $^{87}Rb$ D₁-line H. S. Moon;Y. S. Choe;H. A. Kim;B. S. Kim;K. D. Kim;J. B. Kim https://doi.org/10.1143/JJAP.39.301
  17. J. Korea Phys. Soc. v.35 no.3 Theory of Amplification without inversion in a Trapped Four-Level Atomic System H. A. Kim;Y. S. Choe;B. S. Kim;H. S. Moon;J. B. Kim
  18. E. Arimondo, in Progress in Optics, edited by E. Wolf, (Elsevier, Amsterdam, 1996), Vol. 35, pp. 257-354. https://doi.org/10.1016/S0079-6638(08)70531-6
  19. H. S. Moon, Y. S. Choe, H. A. Kim, B. S. Kim, K. D. Kim, and J. B. Kim, “Amplification without Inversion in the Four-Level N-Type of $^{87}Rb\D_1-line$”, Jpn. J. Appl. Phys. vol. 39, no. 1, pp. 301-305, 2000. https://doi.org/10.1143/JJAP.39.301
  20. H. A. Kim, Y. S. Choe, B. S. Kim, H. S. Moon, and J. B. Kim, “Theory of Amplification without inversion in a Trapped Four-Level Atomic System,” J. Korea Phys. Soc. vol. 35, no. 3, pp. 203-206, 1999.