The Influence of Acid Volatile Sulfide (AVS) on the Bioavailabiltiy and Toxicity of Cd, Ni, and Zn in Sediments to Marine Polychaete Neanthes Arenaceodentata

Cd, Ni, Zn로 오염된 퇴적물에 노출된 Neanthes arenaceodentata의 금속 생물축적, 사망 및 성장저해에 대한 Acid Volatile Sulfide(AVS) 영향

  • Published : 2002.11.01

Abstract

A sediment exposure experiment was conducted to investigate the influence of acid volatile sulfides (AVS) and simultaneously extracted metals (SEM) in sediments on the bioavailability and toxicity of Cd, Ni and Zn to a marine polychaetes Neanthes arenaceodentata. The test animals were exposed to contaminated sediments spiked by metal mixtures of Cd, Ni, Zn (0.5~15 $\mu$mol/g of total SEM) in low (~1 $\mu$mol/g), medium (~5 $\mu$mol/g) and high AVS series (~10 $\mu$mol/g) to determine bioaccumulation, mortality and individual growth rate in each treatment after 20 days. Cd and Zn bioaccumulation in test animals increased with increasing of overlying water (OW) concentration controlled by AVS. In contrast, Ni bioaccumulation increased with increase of SEM concentration. Mortalities and growth inhibitions of N. arenaceodentata observed in only treatments with [SEM-AVS]>0, due to a high level of OW-Zn. With regard to the mortality, the 20-d LC5O value fur OW-Zn was 9.3(8.0$\pm$11.0) $\mu$M. The LOEC (Lowest Observed Effect Concentration) for Tissue-Zn was 7.8 $\mu$mol/g and the NOEC (No Observed Effect Concentration) was 6.2 $\mu$mol/g. Regarding the inhibition of individual growth rate, the LOEC fer Tissue-Zn was 5.9 $\mu$mol/g, and NOEC was 5.1 $\mu$mol/g. In this study, the toxicity of dissolved metals, especially for Zn, was overemphasized due to the reduced distribution coefficients (K$\_$d/s) of metals in the experimental sediments.

퇴적물 내 황화물(acid volatile sulfide, AVS)이 저서 생물의 금속 생물 축적 및 독성 반응에 어떠한 영향을 미치는 지를 이해하기 위해서 해양 다모류인 Neanthes arenaceodentata를 이용한 퇴적물 노출실험을 수행하였다. 이를 위해서 세 개의 다른 AVS 농도군에 대조구를 포함한 다섯 개의 농도 구배로 Cd, Ni, Zn를 오염시킨 퇴적물에서 N. arenaceodentata를 20일간 배양한 후 실험생물의 체내 금속 축적량과 그에 따른 사망률 및 성장률을 조사하였다. N. arenaceodentata에 의한 금속의 생물축적은 Cd과 Zn의 경우 AVS 농도의 영향을 받아서 해수(overlying water, OW)내 용존 금속 농도에 비례해서 증가했다. Ni은 AVS농도에 영향을 받지 않고 퇴적물 내 금속(simultaneously extracted metals. SEM)농도에 비례해서 증가했다. N. arenaceodentata의 사망과 성장률 저해현상은 SEM과 AVS 간의 몰농도차가 영보다 큰 조건([SEM-AVS]>0)에서만 관찰되었는데 용존 Zn에 의한 결과로 추정되었다. OW-Zn의 20-d LC50값은 9.3(8.0$\pm$11.0) $\mu$M이었다. 사망률에 대한 체내 Zn 농도의 최소영향농도(LOEC)는 7.8 $\mu$mol/g이었고, 최대무영향농도(NOEC)는 6.2$\mu$mol/g이었다. 성장률 저해에 대한 체내 Zn 농도의 LOEC는 5.9$\mu$mol/g이었고, NOEC은5.1 $\mu$mol/g토이었다. 본 실험에서는 실험실 조건에서 인위적으로 오염시킨 퇴적물 내 Zn의 입자상 Zn 농도와 용존 Zn농도의 비 (K$_{d}$ )가 현장 퇴적물에 비해서 10배 정도 감소함으로써 결국 용존 Zn에 의한 독성이 과대평가된 것으로 보인다.

Keywords

References

  1. Environ. Chem. Toxicol. v.10 Acid-volatile sulfide as a factor mediating cadmium nickel bioavailability in contaminated sediments Ankley, G.T.;G.L. Phipps;E.N. Leonard;D.A. Benoit;V.R. Mattson;P.A. Kosian;A.M. Cotter;J.R. Dierkes;D.J. Hansen;J.D. Mahony https://doi.org/10.1897/1552-8618(1991)10[1299:ASAAFM]2.0.CO;2
  2. Lumbriculus variegatus. Water. Res. v.28 Prediction of bioaccumulation of metals from contaminated sediments by the oligochaete Ankley, G.T.;E.N. Leonard;V.R. Mattson https://doi.org/10.1016/0043-1354(94)90192-9
  3. Environ. Toxicol. Chem. v.15 Technical basis and proposal for deriving sediment quality criteria for metals Ankley, G.T.;D.M. Di Toro ;D. Hansen;W.J. Berry https://doi.org/10.1897/1551-5028(1996)015<2056:TBAPFD>2.3.CO;2
  4. Environ. Toxicol. Chem. v.15 Predicting the toxicity of metal-spiked laboratory sediments using acid-volatile and interstitial water normalization Berry, W.J.;M. Cantwell;P. Edwards;J.P. Serbst;D.J. Hansen https://doi.org/10.1897/1551-5028(1996)015<2067:PTTOMS>2.3.CO;2
  5. Environ. Toxicol. Chem. v.13 Relationship between acid volatile sulfide and the toxicity of zinc, lead and copper in marine sediments Casas, A.M.;E.A. Crecelius https://doi.org/10.1897/1552-8618(1994)13[529:RBAVSA]2.0.CO;2
  6. Environ. Toxicol. Chem. v.15 Interstitial metal and acid volatile sulfide predict the bioavaliability of cadmium during during a full life-cycle sediment toxicity test using the estuarine amphipod De Witt, T.H.;R.C. Swartz;D.J. Hansen;W.J. Berry;D. McGovern https://doi.org/10.1897/1551-5028(1996)015<2095:BACTOC>2.3.CO;2
  7. Environ. Toxicol. Chem. v.9 Toxicity of cadmium in sediments: The role of acid volatile sulfide Di Toro, D.M.;J.D. Mahony;D.J. Hansen;K.J. Scott;M.B. Hicks;S.M. Mayr;M.S. Redmond https://doi.org/10.1897/1552-8618(1990)9[1487:TOCIST]2.0.CO;2
  8. Environ. Toxicol. Chem. v.26 Acid volatile sulfide predicts the acute toxicity of cadmium and nickel in sediment Di Toro, D.M.;J.D. Mahony;D.J. Hansen;K.J. Scott;A.R. Carlson
  9. Limnol. Oceanogr. v.39 A fixed experiments study of metal toxicity and accumulation by benthic invertebrates; implications for the acid volatile sulfide (AVS) model Hare, L.;R. Carignan;M.A. Huerta-Diaz https://doi.org/10.4319/lo.1994.39.7.1653
  10. Environ. Health Perspect. v.65 Relationship between free cadmium ion activity in seawater, cadmium accumulation and subcellular distribution, and growth in polychaetes Jenkin, K.D.;B.M. Sanders https://doi.org/10.2307/3430182
  11. EPA 68-D8-0085 Protocol for juvenile N. arenaceodentata sediment bioassay John, D.M.;T.C. Ginn;D.J. Reish
  12. Science v.287 Influence of dietary uptake and reactive sulfides on metal bioavailbility from aquatic sediments Lee, B-G.;S.B. Griscom;J-S. Lee;H.J. Choi;C-H. Koh;S.N. Luoma;N.S. Fisher https://doi.org/10.1126/science.287.5451.282
  13. Environ. Sci. Technol. v.34 Influence of acid volatile sulfides and metal concentrations on metal partitioning in contaminated sediments Lee, J-S.;B-G. Lee;S.N. Luoma;C-H. Koh;C.L. Brown https://doi.org/10.1021/es001034+
  14. Environ. Sci. Technol. v.34 Influence of acid volatile sulfide and metal concentrations on metal bioavailability to marine invertebrates in contaminated sediments Lee, B-G.;J-S. Lee;S.N. Luoma;H.J. Choi https://doi.org/10.1021/es001033h
  15. Mar. Ecol. Prog. Series. v.216 Influence of reactive sulfide (AVS) and supplementary food on Ag, Cd and Zn bioaccumulation in the marien polychaetes Neanthes arenaceodentata Lee, J-S.;B-G. Lee;H. Yoo;C-H. Koh;S.N. Luoma https://doi.org/10.3354/meps216129
  16. Environ. Toxicol. Chem. v.14 The role of acid-volatile sulfide and intersititial water metal concentrations in determining bioavailability of cadmium and nickel from contaminated sediments to the marine polychaetes Neanthes arenaceodentata Pesch, C.E.;D.J. Hansen;W.S. Boothman;W.J. Berry;J.D. Mahony https://doi.org/10.1897/1552-8618(1995)14[129:TROASA]2.0.CO;2
  17. TETHY v.11 The use of the polychaetes annelid Neanthes arenaceodentata as a laboratory experimental animal Reish, D.J.
  18. Environ. Toxicol. Chem. v.15 Predicting chronic toxicity of sediments spiked with zinc: An evaluation of the aicd volatile sulfide (AVS) model using a life-cycle test with the midge Chironomus tenatas Sibley, P.K.;G.T. Ankley;A.M. Cotter;E.N. Leonard https://doi.org/10.1897/1551-5028(1996)015<2102:PCTOSS>2.3.CO;2
  19. Chemosphere v.24 Bioaccumulation of nickel in the organs of the freshwater fish, Cyprinus carpio, and the freshwater mussel, Lamellidens marginalis, under lethal and sublethal nickel stress Sreedevi, P.;A. Suresh;B. Sivaramakrishna;B. Prabhaathi;K. Radhakrishnaiah https://doi.org/10.1016/0045-6535(92)90564-8
  20. Office of Science and Technology and Office of Research and Development Technical basis for the derivation of equilibrium-partitioning sediment guidelines (ESGs) for the protection of benthic organisms: Nonionic organics U.S. Environmental Production Agency
  21. Mar. Environ. Res. v.8 The uptake and accumulation of Ni by Cerastoderma edule and its effect on mirtality, body condition and respiration rate Wilson, J.G. https://doi.org/10.1016/0141-1136(83)90047-8