Nitrogen Budget Analysis Using a Box Model for Hajeon Tidal Flat in the West Coast of Korea

Box model을 이용한 서해 곰소만 하전 갯벌의 질소 수지

  • Yoo, Jae-Won (Korea Institute of Coastal Ecology, Inc., Department of Oceanography, Inha University) ;
  • Hong, Jae-Sang (Department of Oceanography, Inha University) ;
  • Yang, Sung-Ryull (Division of Civil & Environmental Engineering, Kwangju University) ;
  • Park, Kyeong (Department of Oceanography, Inha University)
  • 유재원 ((주)한국연안환경생태연구소) ;
  • 홍재상 (인하대학교 해양학과) ;
  • 양성렬 (광주대학교 토목환경공학부) ;
  • 박경 (인하대학교 해양학과)
  • Published : 2002.11.01

Abstract

To estimate the nitrogen budget and assess the purification function of a tidal flat ecosystem, a field survey was carried out at Hajeon tidal flat in Gomso Bay, the southern part of Byeonsan Peninsula, Chollabuk-do, Korea. A study area of 3.0$\times$4.5 ㎢ was established on the tidal flat and the concentrations of chlorophyll-a, DIN, DON, and TN were measured in the water column during the period of April 17-18, 1999: From the budget analysis, the loss rate of Chl-a was estimated to be -0.05 mg Chl/㎡/hr, which is approximately 7% of that at Issiki tidal flat in Aichi Prefecture, Japan. The lower loss rate of Chl-a in the study area was attributable to the lower standing crop of phytoplankton, the lower temperature that may reduce metabolic rates of biotic components and the lower biomass of macrobenthos in the study area. Over the 13.5 ㎢ of study area, Hajeon tidal flat removed 8.36$\times$10$\^$2/ kg N/day of TN, 5.36$\times$10$\^$3/ kg N/day of PON and 1.62$\times$10$\^$2/ kg N/day of phytoplankton-related PON, showing that the tidal flats may play an important role in removing nitrogen in coastal waters. The removal rate of PON, compared to the removal cost of the existing waste water treatment facilities, indicates that the economic value of the purification function of Hajeon tidal flat (13.5㎢) may be more than that of two large facilities.

1999년 4월 17-18일 양일 간 전라북도 부안, 변산반도 남단에 위치한 곰소만의 하전 갯벌에서 3.0$\times$4.5 ㎦의 연구 지역을 설정 , box model을 이용한 물질(Chl-a, DIN, DON, TN) 수지 계산과 자정 기능의 추정을 위한 현장 조사를 실시하였다. 조사 지역의 Chl-a 소실률(-0.05mg Chl/$m^2$/hr)은 일본 아이치현 미카와만 이시키 갯벌의 7% 수준으로 나타났다. 이렇게 낮은 소실률은 낮은 식물플랑크톤 현존량, 조사 시기의 낮은 온도에 따른 대사율 감소 그리고 조사 지역의 낮은 대형저서동물량 때문인 것으로 추정되었다. 질소의 측면에서 물질 수지의 계산 결과, 13.5 $\textrm{km}^2$ 면적의 하전 갯벌에서는 하루 동안 TN및 PON의 소실률이 각각 8.36$\times$$10^{2}$, 5.36$\times$$10^{3}$kgN/day로 그리고 식물플랑크톤 소실에 따른 PON 소실률이 1.62$\times$$10^{2}$kg N/day로 추정되어 갯벌이 연안해역에서 질소 제거에 중요한 역할을 수행하고 있음을 시사하였다. 곰소만 하전 갯벌에서의 PON 소실률을 기존의 1개 하수처리장 평균 처리비용과 비교 할 때 13.5$\textrm{km}^2$ 면적의 하전 갯벌의 수질 정화기능은 대규모 하수처리장 2개 이상에 상당하는 경제적 가치를 지니는 것으로 나타났다

Keywords

References

  1. 국립지리원, 1981. 연안해역 기본조사 보고서(석포지구). 56 pp
  2. 류동기, 1994. 동죽(Mactra veneriformis Reeve)의 자원생태학적연구. 제주대학교 박사학위논문, 110 pp
  3. 서승원, 1996. Euleian-Lagrangian 농도 및 입자 결합모형에 의한 연안의 부유사 확산해석. 한국해안해양공학회지, 8 : 185-192
  4. 신용원, 1988 송도 조간대 퇴적물에서의 조석에 따른 퇴적량 및 퇴적물내 유기물 함량의 변화. 서울대학교 이학석사학위논문, 65 pp
  5. 유규철, 1997. 연안에서 이차원 수직 적분모델의 적용. 인하대학교 이학석사학위논문, 38 pp
  6. 유선재, 김종구, 1999. 갯별의 오염물질 정화능력 평가. 한국수산학회지, 32: 409-415
  7. 이정렬, 1998. 전방추적법에 의한 오염물질의 전송모델. 한국해안해양공학회지, 10: 37-44
  8. 인천광역시, 2000. '99 하수종말 처리시설 운영결과-가좌환경사업소, 승기하수종말 처리장. 인천광역시 물관리과
  9. 장진호, 전승수, 권수재, 신동혁, 한상준, 박용안, 1993. 황해 곰소만 조간대에 발달한 chenier의 퇴적학적 특성과 진화. 한국해양학회지, 28: 212-228
  10. 한국해양연구소, 1998 갯벌의 효율적인 이용과 보존을 위한 연구(2차년도). BSPE 98701-00-1153-3, 559 pp
  11. 한국해양연구소, 1999. 갯벌의 효율적인 이용과 보존을 위한 연구. BSPE 99748-00-1245-3 , 841 pp
  12. 해양수산부, 2001. 갯벌 생태계조사 및 지속 가능한 이용방안 연구. 해양수산부(인쇄중)
  13. 환경부, 1996. 갯벌 보전과 이용의 경제성 평가
  14. 靑山 裕晃, 今尾 和正, 鈴木 輝明, 1996. 千潟域の水質淨化機能一色 千潟を例にして-. 月刊海洋, 28: 178-188
  15. Bartlett, M.S., 1937. Some examples of statistical methods of research in agriculture and applied biology. JR. Stat. Soc. Suppl., 4: 137-170 https://doi.org/10.2307/2983644
  16. Bowie, G.L., WB. Mills, D.B. Porcella, C.L.. Campbell, J.R. Pagenkopf, G.L. Rupp, K.M. Johnson, P.WH. Chan, SA Gherini and C.E. Chamberlin, 1985. Rates, constants, and kinetics formulations in surface water quality modeling (2nd edition). EPAl600/3-85/040, Environmental Research Laboratory, US EPA, Athens, GA, 455 pp
  17. Feuillet-Girard, M., D. Gouleau, G. Blanchard and L. Joassard, 1997. Nutrient fluxes on an intertidal mudflat in Marennes-Oleron Bay, and influence of the emersion period. Aquat. Living Resour., 10:49-58 https://doi.org/10.1051/alr:1997005
  18. Hargrave, B.T., 1980. Factors affecting the flux of organic matter to sediments in a Marine Bay. In: Marine Benthic Dynamics, edited by Tenore, K.R. and B.C. Coull, University of South Carolina Press, pp. 243-263
  19. Kang, C.K., J.B. Kim, J.E. Kim, P.Y. Lee and J.S. Hong, 2001. The importance of intertidal benthic autotrophs to the Kwangyang Bay (Korea) food webs: 13C analysis. J Korean Soc. Oceanogr., 36(4): 109-123
  20. Lie, U., 1968. A quantitative study of benthic infauna in Puget Sound, Washington, USA, in 1963-64. FiskDir. Skt: Set: Havi.Inders, 14: 229-556
  21. Nichols, F.H., 1977. Infaunal biomass and production on a mudflat, San Francisco Bay, California. In: Ecology of Marine Benthos, edited by Coull, B.C., University of South Carolina Press, pp. 339-357
  22. Odum, H.T., 1971. Environment, power and society. Wiley, New York
  23. Reise, K., 1985. Tidal flat ecology - an experimental approach to species interaction. Springer-Verlag, Berlin, 191 pp
  24. SAS, 1987. SAS/STAT guide for personal computers, Version 6.03 edition. SAS Institute Inc., Cary, NC, 1028 pp
  25. Sasaki, K., 1997. The function of production and purification by diverse organisms on an intertidal flat. Bull. Natl. Res. Inst. Aquaeult. Suppl., 3: 17-24
  26. Valiela, I., 1995. Marine ecological processes-2nd edition. Springer, 686 pp
  27. Yin, K. and P.J. Harrison, 2000. Influences of flood and ebb tides on nutrient fluxes and chlorophyll on an intertidal flat. Mar. Ecol. Prog. Sen, 196: 75-85 https://doi.org/10.3354/meps196075
  28. Yoo, J.W., 1998. The spatial distribution and long-term variation of macrofaunal communities on macrotidal flats in the west central coast of Korea. Ph.D Thesis, Inha University, Incheon, Korea, 352 pp