Geophysical characteristics of seamounts around Dok Island

동해 독도주변 해산의 지구물리학적 특성

  • Published : 2002.11.01

Abstract

Dok Island, a Pliocene volcano, lies in the southwestern part of the East Sea. Most the work to date have focused primarily on the petrolography of the island, and as a result, the morphological characteristics and internal structure of the volcanic edifices of the Dok Island remain poorly understood. To provide better constraints on these features, bathymetric data with multibeam echo sounder, 32-channel seismic and 3D gravity modeling were used in this study. Three positive topographic highs are present in the study area, and these highs satisfy the seamount criteria. They are named as Dokdo, Tamhae, and Donghae seamounts. 32-channel seismic survey was conducted to investigate the sediment thickness of the area, which shows that there are no sediments near the summit of seamounts. Away from the seamounts, however, sediment becomes thick(>2000 m) toward the western part of the study area, and sediments in the northern and southern parts are about 1000 m thick. Free-Air gravity anomalies in this study generally follow the bathymetric feature with less than -20 mGal at the western part, but increase towards the seamounts. In the summit of the Dokdo Seamount, anomalies reach over 120 mGal, and in Tamhae and Donghae seamounts, the peak anomaly shows 90 and 70 mGals, respectively. All seamounts have an isolated volcanic conduit in their centre and show regional compensation root with 0.5~1.5 km thickness. The flat-topped summit of the seamounts is probably caused by wave truncation, indicating the sea level at the time of formation of the flat-topped geometry. Comparison between the present-day sea level and subsidence level during the opening of the East Sea suggests that the seamounts in the study area have subsided by 200~300 m after the formation. Furthermore, it implies that the seamounts formed over 12~10 Ma.

동해의 남서쪽해역에 위치하고 있는 독도는 플라이오세에 생성된 화산섬으로 알려져 있다. 그러나 기존의 연구들은 독도 자체의 암석학적인 연구에만 초점을 두어 독도 하부의 화산체에 대한 형태 및 내부구조를 명확하게 알 수 없었다. 따라서 본 연구는 다중빔 음향측심, 32채널 탄성파 탐사 및 3D 중력모델링을 통하여 이와 같은 특성들을 알아내고자 하였다. 연구지역에는 3개의 지형학적인 고지대가 발달되어 있으며 이 고지대들은 일반적인 해산의 특성을 지니고 있어 본 연구에서는 이 고지대를 독도해산, 탐해해산. 동해해산이라 명명하였다. 그리고 연구지역에 발달한 퇴적층의 두께를 규명하기 위하여 32채널 탄성파 탐사를 수행하였다. 취득된 탄성파 자료에 의하면 해산들의 정상부분에는 퇴적물이 거의 퇴적되어 있지 않으나 해산들로부터 멀어질수록 퇴적층이 발달하기 시작하여 연구지역의 서쪽에서는 2000m이상의 두꺼운 퇴적층이 발달하고 있으며 연구지역의 남쪽 및 북쪽지역에서는 약 1000m두께의 퇴적층이 나타난다. 후리-에어 중력이상은 연구지역의 서쪽에서는 -20mGa1 이하의 값을 보이고 있으나 해산 쪽으로 갈수록 점점 증가하여 독도해산의 정상부분에서는 120 mGal 이상, 탐해해산 및 동해해산의 경우 각각 90 mGal 및 70mGa1이상의 후리-에어이상을 보이고 있다. 그리고 연구지역에 나타나는 해산들은 모두 그 중앙부에 독립된 화도(volcanic conduit)를 지니고 있으며 0.5~l.5 km 두께의 광역보상뿌리(regional compensation root)를 형성하고 있다. 연구지역의 해산들이 보여주고 있는 평탄한 정상부는 해수의 침식에 의하여 생성되었으며 이러한 정상부는 평탄한지형이 생성될 당시의 해수면을지시하며 현재 해수면의 위치와 동해에서의 일어난 해저면의 침강정도(subsidence level)를 비교하여 볼 때 해산들은 생성된 이후 약 200~300m정도 침강되었고 형성시기는 최소 12~10Ma이전 인 것으로 사료된다.

Keywords

References

  1. 김원균, 김창환, 박찬홍, 한현철, 권문상, 민경덕, 김백수, 최영섭, 2000. 독도 및 그 주변 해산 중력 이상의 지구조적 해석. 자원환경지질학회지, 33: 537-545
  2. 석봉출, 1992 동해 울릉분지의 지구물리학적 연구. 한국해양연구소, BSPE 00242-433-5, 149 pp
  3. 유동근, 1999. 정밀 해저지형 탐사기술 자립화 연구. 한국자원연구소, 272 pp
  4. 한상준, 1996. 한국 대수심 해역의 지구적 해저환경 연구. 한국해양연구소, BSPN 00321-950-5, 548pp
  5. Batiza, R., and D. Yanko, 1983. Volcanic development of small oceanic central volcanoes on the flanks of the East Pacific Rise inferred from narrow-beam echo-sounder surveys. Mar. Geol., 60: 53-90
  6. Batiza, R., D.J. Fomari, D.A Yanko, and P. Lonsdale, 1984. Craters, Calderas, and Hyaloclastites on Yong Pacific Seamount. J. Geophys. Res., 89: 8371-8390 https://doi.org/10.1029/JB089iB10p08371
  7. Chough, S.K. and E. Barg, 1987. Tectonic history of Ulleung basin margin, East Sea(Sea of Japan). Geology, 15: 45-48
  8. Duxbury A.C. and AB. Duxbury, 1989. An introduction to the world's oceans. Brown Publishers, USA, 466 pp
  9. Freitag, H.C., 1987. Gravity fields of eight north Pacific seamounts: Implications for density. M.S. Thesis, Texas A&M University, 127 pp
  10. Gnibidenko, H., 1979. The tectonics of the Japan Sea. Marine Geol., 32: 71-87 https://doi.org/10.1016/0025-3227(79)90147-6
  11. Han, H.C., 1993. Geophysical constraints on the origin of the Shatsky Plateau. Ph.D. Dissertation, Texas A&M University, 272pp
  12. Han, H.C., C.W. Lee, S.P. Kim, J.H. Kim, D.G. Yoo, K.O. Kim and M.H. Kang, 1998. Morphometric characteristics of seamounts around the Dok Island. In: J. Korean Soc. Oceanogr. Spring Session, Abstract, pp. 89-90
  13. Heiskanen, W.A and H. Moritz, 1987. Physical Geodesy. Instiute of Physical Geodesy, Austria, 364 pp
  14. Hess, H.H., 1946. Drowned ancient islands of the Pacific Basin, Am. J. Sci., 244: 772-791 https://doi.org/10.2475/ajs.244.11.772
  15. Ingle, J.C., 1992. Subsidence of the Japan Sea: Stratigraphic evidence from ODP sites and onshore sections. Proceedings ODP, Sci. Results, 127/128, Pt. 2: 1197-1218
  16. Ingle, J.C., K. Suyehiro, M.T von Breymann et al., 1990. Introduction, background, and principal results of leg 128 of the Ocean Drilling Program, Japan Sea. Proceedings ODP, Init. Repts., 128:5-38
  17. Jolivet, L. and K. Tamaki, 1992. Neogene kinematics in the Japan Sea region and volcanic activity of the northeast Japan arc. Proceedings ODP, Sci. Results, 127/128, Pt. 2: 1311-1331
  18. Jolivet, L., K. Tamaki and M. Fournier, 1994. Japan Sea, Opening history and mechanism: A synthesis. J. Geophys. Res., 99: 22237-22259 https://doi.org/10.1029/93JB03463
  19. Jordan, TH., H.W Menard, and D.K. Smith, 1983. Density and size distribution of seamounts in the Eastern Pacific inferred from Wide-Beam sounding data. J. Geophys. Res., 88: 10508-10518 https://doi.org/10.1029/JB088iB12p10508
  20. Kellogg, J.N. and I.J. Ogujiofor, 1985. Gravity field analysis of Sio Guyot: An isostatically compensated seamount in the Mid-PacificMounts. Geo-Marine Lett., 5: 91-97 https://doi.org/10.1007/BF02233933
  21. Kellogg, J.N., B.S. Wedgeworth and J. Freymuller, 1987. Isostatic compensation and conduit structures of western Pacific seamounts: Results of three-dimensional gravity modeling. In: Seamount, Islands, and Atolls, Geophys. Monogr. Ser., vol. 43, edited by Keating, B.H., P. Fryer, R. Batiza and G.W. Boehlert, pp. 85-96
  22. Kennet, J.P., 1982. Marine Geology. Prentice-Hall, USA, 813 pp
  23. Kim, H.J., C.H.Park, J.K. Hong, H.T. Jou, T.W. Chung, V. Zhigulef, and G.I. Anosov, 1994. A seismic experiment in the Ulleung Basin (Tsushima Basin), southwestern Japan Sea(East Sea of Korea). Geophys. Res. Lett., 21: 1975-1978 https://doi.org/10.1029/94GL01596
  24. Kim, Y.K., 1982. Petrology of alkali volcanic rocks in northern part of Ulleung Island. M.S. Thesis, Yonsei University, Seoul, 65 pp
  25. Kim, Y.K., D.S. Lee and K.H. Lee, 1987. Fractional crystallization of the volcanic rocks from Dok Island, Korea. J. Geol. Soc. Korea, 23: 67-82
  26. Kurashimo, E., M. Shinohara, K. Suyehiro, J. Kasahara and N. Hirata, 1996. Seismic evidence for stretched continental crust in the Japan Sea. Geophys. Res. Lett., 23: 3067-3070 https://doi.org/10.1029/96GL02765
  27. Le Pichon, X. and M. Talwani, 1964. Gravity survey of a seamount near $35{^\circ}$N $46{^\circ}$ W in the North Atlantic. Mar. Geol., 2: 262 -277 https://doi.org/10.1016/0025-3227(64)90044-1
  28. Le Pichon, X. and M. Talwani, 1965. Crustal structure of the midocean ridges; Seismic refraction measurement. J. Geophys. Res., 70: 319-339 https://doi.org/10.1029/JZ070i002p00319
  29. Ludwig, WJ., S. Murauchi, R.E. Houtz, 1975. Sediments and structure of the Japan Sea. Geol. Soc. America Bull., 86: 651 -664 https://doi.org/10.1130/0016-7606(1975)86<651:SASOTJ>2.0.CO;2
  30. Machida, H. and F. Arai, 1981. Late Quaternary large eruption recorded in distal areas around Japan. In: JAVCEI Symposium, pp. 214-215
  31. Menard, H.W, 1964. Marine Geology of the Pacific. McGraw-Hill, New York, 271 pp
  32. Menard, H.W, 1984. Origin of Guyots: The Beagle to Seabeam. J. Geophys. Res., 89: 11117-11123 https://doi.org/10.1029/JB089iB13p11117
  33. Natland J. H., 1976. Possible volcanologic explanations for the origin of flat-topped seamounts and ridges in the Line Islands and Mid Pacific Mountains. Initial Rep. Deep Sea Drill. Proj., 33: 779-787
  34. Park, C.-H., H.-J. Kim, C.-S. Yang, B.-C. Suk and N. Isezaki, 1996. Crustal structure of the Ulleung Basin, the East Sea(Japan Sea), from gravity and ocean bottom seismometer data. J Geol. Soc. Korea, 32: 276-290
  35. Park, K.S., 1992. Geologic structure and seismic stratigraphy of the southern part of Ulleung basin. In: Sedimentary basins in the Korean Peninsular and adjacent seas, edited by Chough, S.K., Hanlimwon Pub., Seoul, pp. 40-59
  36. Plouff, D., 1976. Gravity and magnetic fields of polygonal prisms and applications to magnetic terrain corrections. Geophysics, 41:727-741 https://doi.org/10.1190/1.1440645
  37. Sager, W.W., G.T. Davis, B.H. Keating and J.A. Philpotts, 1982. A geophysical and geologic history of Nagata seamount. J Geomagn. Geolectr., 34: 283-305 https://doi.org/10.5636/jgg.34.283
  38. Schimke, G.R. and C. Bufe, 1968. Geophysical description of a Pacific Ocean seamount. J. Geophys. Res., 73: 559-569 https://doi.org/10.1029/JB073i002p00559
  39. Simkin, T., 1972. Origin of some flat-topped volcanoes and guyots. In: Studies in Earth and Space Sciences, Mem, 132, edited by Shagam R., et al., Geological Society ofAmerica, Boulder, Colo., pp. 183-194
  40. Smith, D.K., 1988. Shape analysis of Pacific seamounts. Earth Planet. Sci. Lett., 90: 457 -466 https://doi.org/10.1016/0012-821X(88)90143-4
  41. Sohn, Y.K., 1995. Geology of Tok Island, Korea: eruptive and depositional processes of a shoaling to emergent island volcano. Bull. Volcanol., 56: 660-674 https://doi.org/10.1007/BF00301469
  42. Sohn, Y.K. and K.H. Park, 1994. Geology and evolution of Tok Island, Korea. J Geol. Soc. Korea, 30: 242 -261
  43. Stroev, P.A. and H. Fujimoto, 1996. Gravity anomalies in and around the Japan Sea. In: Geology and Geophysics of the Japan Sea, edited by Isezaki, N., I.I. Bersenev, K. Tamaki, BY Karp and E.P. Lelikov, Terra Scientific Pub. Co., Tokyo, pp. 49-60
  44. Suh, M., M. Lee and B. Suk, 1993. Geological structure of the Ulleung Basin from marine gravity data. J Geol. Soc. Korea, 29: 119-127
  45. Tamaki, K., 1988. Geological structure of the Japan Sea and its tectonic implications. Bull. Geol. Surv. Japan, 39: 269-365
  46. Tamaki, K., 1990. Bathymetric map of the Japan Sea. Proceedings ODP, Initial Reports, 128
  47. Tamaki, K., K. Suyehiro, J. Allan, le. Ingle and K.A. Pisciotta, 1992. Tectonic synthesis and implications of Japan Sea ODP drilling. Proceedings OD?, Sci. Results, 127/123, Pt. 2: 1333-1348
  48. Tamaki, K. and I.I. Bersenev, 1996. Morphology of the Japan Sea. In: Geology and Geophysics of the Japan Sea, edited by Isezaki, N., LL Bersenev, K. Tamaki, B.Y Karp and E.P. Lelikov, Terra Scientific Pub. Co., Tokyo, pp. 35-40
  49. Wedgeworth, B.S., 1985. Ita Mai Tai Guyot: A comparative geophysical study of western Pacific seamounts. M.S. Thesis, Hawaii University, 90 pp
  50. Wedgeworth, B. and J. Kellogg, 1987. A 3-D gravity-tectonic study of Ita Mai Tai Guyot: An uncompensated seamount in the East Mariana Basin. In: Seamount, Islands, and Atolls, Geophys. Monogr. Ser., vol. 43, edited by Keating, B.H., P. Fryer, R. Batiza and G.W Boehlert, AGU, Washington, D.C., pp. 73-84
  51. Won, J.K. and M.W. Lee, 1984. The volcanism and petrology of alkali volcanic rocks, Ulleung Island. J Geol. Soc. Korea, 20: 296-305
  52. Yoon, S.H., S.J. Park and S.K. Chough, 1997. Western boundary fault systems of Ulleung Back-arc Basin: further evidence of pull-apart opening. Geoscience J., 1: 75-88 https://doi.org/10.1007/BF02910479