Characteristics of Crossflow Electro-microfiltration Process for Treatment of Oily Waste Water

오일함유 폐수 처리를 위한 전기정밀여과 공정 특성

  • 최왕규 (한국원자력연구소 핵화공연구팀) ;
  • 이재원 (한국원자력연구소 핵화공연구팀) ;
  • 이근우 (한국원자력연구소 핵화공연구팀)
  • Published : 2002.12.01

Abstract

Experimental study on the crossflow electro-microfi1tation of simulated oil emulsion waste water was carried out with polypropylene microfiltration membrane to evaluate the applicability of electrofiltration process in the treatment of oily waste water generated from many industries including nuclear field. The effects of electric field strength transmembrane pressure, crossflow velocity, and oil emulsion concentration on the permeate flux were investigated. In electro-microfiltration process using the external electric field, significant enhancement of permeate flux was achieved by diminishing membrane fouling and it was shown that considerable permeate flux can be maintained for long-term operation compared with conventional membrane filtration process without an electric field.

원자력 분야를 포함하는 다양한 산업에서 발생하고 있는 오일 함유 폐액의 처리에 있어서 전기여과막 공정의 적용성을 평가할 목적으로 폴리프로필렌 정밀여과막을 사용한 모의 오일 에멀젼 폐액의 막 여과 실험을 수행하였다. 이때 투과 플럭스에 대한 전기장의 효과 및 투과 플럭스에 영향을 주는 주요 인자들로써 막간 차압, 교차흐름 유속 및 오일 에멀젼 농도의 영향을 고찰하였다. 전기장을 가해주는 전기정밀여과 공정은 기존의 전기장을 사용하지 않는 막 여과 공정에 비해서 막 오염 문제를 현저히 개선함으로써 투과 플럭스가 크게 향상되었으며 장기간의 조업시에도 상당한 투과 플럭스의 유지가 가능함을 보였다.

Keywords

References

  1. Membranes in Bioprocessing Electrochemical aspects of microfiltration and ultrafiltration W. R. Bowen;J. A. Howell(Ed.);V. Sanchez(Ed.);R. W. Field(Ed.)
  2. Colloids and Surfaces A: Physicochem. Eng. Aspects v.138 Charge effects on inorganic membrane performance in a crossflow microfiltration process D. Elzo;I. H. Huisman;E. Middlelink;V. Gekas https://doi.org/10.1016/S0927-7757(96)03957-X
  3. Colloids and Surfaces A: Physicochem. Eng. Aspects v.138 Properties of the cake layer formed during crossflow microfiltration process I. H. Huisman;D. Elzo;E. Middlelink;C. Tragardh https://doi.org/10.1016/S0927-7757(96)03976-3
  4. J. Membrane Sci. v.156 Electrically enhanced crossflow membrane fltration of oily waste water using the membrane as a cathode H. M. Huotari;I. H. Huisman;G. Tragardh https://doi.org/10.1016/S0376-7388(98)00325-1
  5. J. Membrane Sci. v.38 Basic transport mechanism of ultrfiltration in the presence of an electric field G. M. Rios;H. Rakotorisoa;B. Tarodo de la Fuente https://doi.org/10.1016/S0376-7388(00)80876-5
  6. Sep. Sci. Technol. v.20 no.4 Steady-state modeling of electroultrafiltration at constant concentration J. M. Radovich;B. Behnam;C. Mullon https://doi.org/10.1080/01496398508060682
  7. J. Coating technol. v.54 Electroultra-filtration of a cationic electrodeposition paint J. M. Radovich;I. M. Chao
  8. J. Membrane Sci. v.131 Electric field enhanced crossflow microfiltration of hydrophobically modified water soluble polymers G. Akay;R. J. Wakeman https://doi.org/10.1016/S0376-7388(97)00048-3
  9. Trans IChemE v.77 Grossflow Membrane Filtration Enhanced by an External DC Electric Field: A Review H. M. Huotari;G. Tragardh;I. H. Huisman https://doi.org/10.1205/026387699526304
  10. J. Membrane Sci. v.124 Particle deposition and layer formation at the crossflow micro-filtration J. Altmann;S. Ripperger https://doi.org/10.1016/S0376-7388(96)00235-9
  11. AIChE J. v.23 no.6 A solid/liquid separation process based on cross flow and electrofiltration J. D. Henry;L. F. Lawler;C. H. A. Cuo https://doi.org/10.1002/aic.690230611
  12. Membrane J. v.12 no.1 Effect of Periodic N₂-back-flushing in paper wastewater treatment using carbon ceramic ultrafiltration and microfiltration membranes H. J. Hwang;J. Y. Park
  13. J. Membrane Sci. v.149 Modeling of flux decline during crossflow ultrafiltration of colloidal suspensions Y. Lee;M. M. Clark https://doi.org/10.1016/S0376-7388(98)00177-X
  14. Chem. Eng. J. v.69 Crossflow microfiltration of shear-thinning aqueous titanium dioxide dispersions P. Mikulasek;R. J. Wakeman;J. Q. Marchant https://doi.org/10.1016/S1385-8947(97)00108-3