Trap characteristics of charge trap type NVSM with reoxidized nitrided oxide gate dielectrics

재산화 질화산화 게이트 유전막을 갖는 전하트랩형 비휘발성 기억소자의 트랩특성

  • 홍순혁 (광운대학교 반도체 및 신소재공학과) ;
  • 서광열 (광운대학교 반도체 및 신소재공학과)
  • Published : 2002.12.01

Abstract

Novel charge trap type memory devices with reoxidized oxynitride gate dielectrics made by NO annealing and reoxidation process of initial oxide on substrate have been fabricated using 0.35 $\mu \textrm{m}$ retrograde twin well CMOS process. The feasibility for application as NVSM memory device and characteristics of traps have been investigated. For the fabrication of gate dielectric, initial oxide layer was grown by wet oxidation at $800^{\circ}C$ and it was reoxidized by wet oxidation at $800^{\circ}C$ after NO annealing to form the nitride layer for charge trap region for 30 minutes at $850^{\circ}C$. The programming conditions are possible in 11 V, 500 $\mu \textrm{s}$ for program and -13 V, 1ms for erase operation. The maximum memory window is 2.28 V. The retention is over 20 years in program state and about 28 hours in erase state, and the endurance is over $3 \times 10^3$P/E cycles. The lateral distributions of interface trap density and memory trap density have been determined by the single junction charge pumping technique. The maximum interface trap density and memory trap density are $4.5 \times 10^{10} \textrm{cm}^2$ and $3.7\times 10^{18}/\textrm{cm}^3$ respectively. After $10^3$ P/E cycles, interlace trap density increases to $2.3\times 10^{12} \textrm{cm}^2$ but memory charges decreases.

실리콘 기판 위의 초기 산화막을 NO 열처리 및 재산화 공정방법으로 성장한 재산화된 질화산화막을 게이트 유전막으로 사용한 새로운 전하트랠형 기억소자로의 응용가능성과 계면트랩특성을 조사하였다. 0.35$\mu$m CMOS 공정기술을 사용하여 게이트 유전막은 초기산화막을 $800^{\circ}C$에서 습식 산화하였다 전하트랩영역인 질화막 층을 형성하기 위해 $800^{\circ}C$에서 30분간 NO 열처리를 한 후 터널 산화막을 만들기 위해 $850^{\circ}C$에서 습식 산화방법으로 재산화하였다. 프로그램은 11 V, 500$\mu$s으로 소거는 -l3 V, 1 ms의 조건에서 프로그래밍이 가능하였으며, 최대 기억창은 2.28 V이었다. 또한 11 V, 1 ms와 -l3 V, 1 ms로 프로그램과 소거시 각각 20년 이상과 28시간의 기억유지특성을 보였으며 $3 \times 10^3$회 정도의 전기적 내구성을 나타내었다. 단일접합 전하펌핑 방법으로 소자의 계면트랩 밀도와 기억트랩 밀도의 공간적 분포를 구하였다. 초기상태에서 채널 중심 부근의 계면트랩 및 기억트랩 밀도는 각각 $4.5 \times 10^{10}/{cm}^2$$3.7\times 10^{1R}/{cm}^3$ 이었다. $1 \times 10^3$프로그램/소거 반복 후, 계면트랩은 $2.3\times 10^{12}/{cm}^2$으로 증가하였으며, 기억트랩에 기억된 전하량은 감소하였다.

Keywords

References

  1. Nonvolatile Semiconductor Memory Technology W.D. Brown;J.E. Brewer
  2. IEEE Non-Volatile Semiconductor Memory Workshop MONOS Memory Cell Scalable to 0.1μm and Beyond I. Fujiwara;H. Aozasa;A. Nakamura;Y. Hayashi;T. Kobayashi
  3. Symposium on VLSI Technology Digest of Technical Papers v.9A-1 A New Oxide Damage Characterization Technique for Evaluating Hot Carrier Reliability of Flash Memory Cell After P/E Cycles Steve. S. Chung;C.M. Yih.;S.M. Cheng;M.S. Liang
  4. IEEE VLSI Tech. Symp. Direct Lateral Profiling of Both Oxide Charge and Interface Traps in Thin Gate MOSFET Devices C. Chen;T.P. Ma
  5. IEEE Trans. Electron Devices v.45 Direct Lateral Profiling of Hot Carrier Induced Oxide Charge and interface traps in Thin Gate MOSFET's C. Chen;T.P. Ma https://doi.org/10.1109/16.658688
  6. IEEE Trans. Electron Devices v.45 Analysis of Enhanced Hot-carrier Effects in Scaled Flash Memory Devices C. Chen;Z. Liu;T.P. Ma https://doi.org/10.1109/16.701484
  7. VLSI Tech. Digest Tech. Symp. v.9A-2 A. Novel SONOS Structure for Nonvolatile Memories with Improved Data Retention H. Reisinger;M. Franosch;B. Hasler;T.Bohm
  8. Appl. Phy. Lett. v.75 no.8 Cycling Endurance of Silicon-Oxide-Nitride-Oxide-Silicon Nonvolatile Memory Stacks Prepared with Nitrided $SiO_2/Si(100)$ Interfaces S. Harbermehl;R.D. Nasby;M.J. Rightley https://doi.org/10.1063/1.124616
  9. IEEE Trans. Electron. Devices v.42 no.11 Write/Erase Degradation in Source Side Injection Flash EEPROM's: Characterization Techniques and Wearout Mechanisms Dirk Wellekens;Jan Van Houdt;Lorenzo Faraone;Guido Groeseneken;Herman E. Maes https://doi.org/10.1109/16.469408