Immobilization and Grafting of Acrylic Acid on Polyethylene Surface by Ar-plasma Treatment

알곤 플라즈마처리에 의한 폴리에틸랜 표면상의 아크릴산 고정화와 그라프팅

  • 김민정 (경남대학교 화학공학부) ;
  • 서은덕 (경남대학교 화학공학부)
  • Published : 2002.03.01

Abstract

For surface modification of polymers with hydrophilic functional groups, acrylic acid was grafted and immobilized on the surface of polyethylene(PE) by cold-plasma treatment using Ar gas. The modifications were identified by analysis of ATR-IR spectrum and by the measurement of contact angles. Compared to virgin PE significant decreases in contact angle were observed for both the grafted PE and the immobilized PE. The decreases of contact angle were in the range of 47~$53^{\circ}$ for grafted PE and 23~$26^{\circ}$ for immobilized PE. The degree of hydrophilicity depended strongly on the plasma-treating time and discharge power. For the case of grafting it has show that the longer plasma-treating time, the higher hydrophilic character. For the case of immobilization, whereas, higher discharge power and longer exposure to plasma have shown the detrimental effect for the preparation of hydrophilic PE surface due to the decrease of carboxyl group by ablation effect. The decrease in adhesion strength of immobilized PE. compared to grafted PE, was also attributed to the ablation of carboxyl group.

기능성고분자표면으로 개질하기 위해서 polyethylene(PE)표면에 아크릴산을 알곤 플라즈마를 이용하여 고정화와 그라프팅을 행하고 고정화와 그라프딩에 의한 개질효과를 ATR적외선스펙트럼의 분석, 접촉각과 접착강도 측정에 의하여 평가하였다. 아크릴산의 특성흡수띠와 접촉각의 현저한 감소사실로부터 친수성개질을 평가하였다. 그라프팅된 PE의 접촉각은 플라즈마처리시간에 따라서 무처리 PE에 비하여 47~$53^{\circ}$ 감소하였고 고정화된 PE는 이보다 작은 23~$26^{\circ}$ 감소하여 그라프팅이 고정화보다 더 효과적인 친수화 수단이 됨을 관찰할 수 있었다. 표면친수화의 정도는 플라즈마 처리시간과 방전출력에 강하게 의존하였다. 그라프팅의 경우 처리시간이 증가할수록 더욱 친수화되지만 고정화의 경우는 처리시간의 증가와 방전출력의 증가는 오히려 친수성을 감소시켰다. 개질된 PE표면의 peel test에 의한 접착강도측정 전파 역시 접촉각과 같은 경향을 나타내었다. 이러한 현상은 고정화과정 중에 아크릴산이 ablation되어 표면의 카복시친수성기가 감소하는 현상 때문으로 해석되었다.

Keywords

References

  1. Polymer(Korea) v.23 G. Khang;J. H. Jeon;J. C. Cho;H. B. Lee
  2. Polymer(Korea) v.23 G. Khang;J. H. Jeon;J. C. Cho;J. M. Rhee;H.B. Lee
  3. Polymer(Korea) v.24 G. Khang;S. J. Lee;J. H. Jeon;J. H. Lee;H. B. Lee
  4. Polymer(Korea) v.24 S. J. Lee;G. Khang;J. H. Lee;Y. M. Lee;H.B. Lee
  5. J. Biomater. Sci. Polymer Ed. v.5 T. Kashiwagi;Y. Ito;Y. Imanishi https://doi.org/10.1163/156856294X00725
  6. Makromol. Chem. v.191 T. Takakura;M. Kato;M. Yamabe https://doi.org/10.1002/macp.1990.021910317
  7. Transaction of the 3rd World Biomaterial Congress v.11 T. Takakura;M. Kato;K. Kataoka;T. Okano;Y. Skurai
  8. Plasma Polymerization H. Yasuda
  9. J. Appl. Polym. Sci., Appl. Polym. Symp. v.38 A. W. Hahn;D. H. York;M. E. Nochols;G. C. Armomin;H. Yasuda https://doi.org/10.1002/app.1989.070380106
  10. J. Appl. Polym. Sci. v.41 D. L. Cho;P. M. Claesson;C. Golander;K. Johanssen
  11. Polymer(Korea) v.13 E. D. Seo;H. Yasuda
  12. Polymer(Korea) v.14 E. D. Seo;H. Yasuda
  13. Polymer(Korea) v.15 Y. R. Kang;H. S. Lym;E. D. Seo
  14. J. of Kor. Soc. of Dyer and Finishers v.3 Y. R. Kang;H. S. Lym;E. D. Seo
  15. J. of Kor. Soc. of Dyer and Finishers v.4 H. Cho;B. Y. Chang;D. S. Chang;M. W. Hur;I. S. Cho;K. W. Lee
  16. J. of Kor. Soc. of Dyer and Finishers v.1 S. Y. Mo;T. I. Chun;S. C. Choi
  17. Polymer(Korea) v.19 Y. R. Kang;S. S. Kim;E. D. Seo
  18. Polymer(Korea) v.22 Y. R. Kang;E. D. Seo
  19. J. Polym. Sci., Part A:Polym. Chem. v.36 J. P. Lens;J. G. A. Terlingen;G. H. M.Engbers;J. Feijin https://doi.org/10.1002/(SICI)1099-0518(199808)36:11<1829::AID-POLA17>3.0.CO;2-G
  20. Introduction to Polymer Spectroscopy W. Klopffer
  21. Techniques and Applications of Plasma Chemistry M. Hudis;J. R. Hollahan(ed.);A. T. Bell(ed.)
  22. Hummel/Scholl Atlas of Polymer and Plastics Analysis(2nd Ed.) v.1 D. O. Hummel
  23. Polymer v.37 N. Dilsiz;G. Akovali https://doi.org/10.1016/0032-3861(96)81107-4
  24. Polymer v.38 D. M. Cho;C. K. Park;K. Cho;C. E. Park https://doi.org/10.1016/S0032-3861(97)00175-4
  25. Modern Approaches to Wettability M. E. Schrader;G. I. Loeb