DOI QR코드

DOI QR Code

Growth and Photocurrent Properties for the AgInS2 Epilayers by Hot Wall Epitaxy

Hot wall epitaxy방법에 의한 AgInS2 박막의 성장과 광전류 특성

  • Kim, H.S. (Multimedia Information, Naju collage) ;
  • Hong, K.J. (Department of Physics, Chosun University) ;
  • Jeong, J.W. (Department of Physics, Chosun University) ;
  • Bang, J.J. (Department of Physics, Chosun University) ;
  • Kim, S.H. (Department of Physics, Chosun University) ;
  • Jeong, T.S. (Department of Phusics and Semiconductor Physics Research Center(SPRC), Jeonbuk National University) ;
  • Park, J.S. (Department of metallurgical and Material Science Engineering, Chosun University)
  • 김혜숙 (나주대학 멀티미디어 정보) ;
  • 홍광준 (조선대학교 물리학과) ;
  • 정준우 (조선대학교 물리학과) ;
  • 방진주 (조선대학교 물리학과) ;
  • 김소형 (조선대학교 물리학과) ;
  • 정태수 (전북대학교 물리학과, 반도체 물성센터) ;
  • 박진성 (나주대학 멀티미디어 정보)
  • Published : 2002.07.01

Abstract

A silver indium sulfide ($AgInS_2$) epilayer was grown by the hot wall epitaxy method, which has not been reported in the literature. The grown $AgInS_2$ epilayer has found to be a chalcopyrite structure and evaluated to be high quality crystal. From the photocurrent measurement in the temperature range from 30 K to 300 K, the two peaks of A and B were only observed, whereas the three peaks of A, B, and C were seen in the PC spectrum of 10 K. These peaks are ascribed to the band-to-band transition. The valence band splitting of $AgInS_2$ was investigated by means of the photocurrent measurement. The crystal field splitting, $\Delta_{cr}$ , and the spin orbit splitting, $\Delta_{so}$ , have been obtained to be 0.150 eV and 0.009 eV at 10 K, respectively. And, the energy band gap at room temperature has been determined to be 1.868 eV. Also, the temperature dependence of the energy band gap, $E_{g}$(T), was determined.d.

Keywords

References

  1. C.M. Joseph, C.S. Menon, Semicond. Sci. Technol. 11, 1668 (1996) https://doi.org/10.1088/0268-1242/11/11/005
  2. C. Rincon, S.M. Wasim, S. Marin, G. Sanchez Perez, G. Bacquet, J. Appl, Phys. 82, 4500 (1997) https://doi.org/10.1063/1.366183
  3. M. Kanzari, B. Rezig, Semicond. Sci. Technol. 15, 335 (2000) https://doi.org/10.1088/0268-1242/15/4/306
  4. J.1, Shay, B. Tell, H.M. Kasper, L.M. Schiavone, Phys. Rev. 8 5, 5003 (1972) https://doi.org/10.1103/PhysRevB.5.5003
  5. J.L. Shay, H.M. Kasper, Phys, Rev. Lett. 29, 1162 (1972) https://doi.org/10.1103/PhysRevLett.29.1162
  6. J.E. Jaffe, A. Zunger, Phys. Rev. B 29, 1882 (1984) https://doi.org/10.1103/PhysRevB.29.1882
  7. N.V. Joshi, L. Martinez, R. Echeverria, J. Phys, & Chem. Solids 42, 281 (1981) https://doi.org/10.1016/0022-3697(81)90141-4
  8. J.L. Shay, J.H. Wernick, Ternary chalcopyrite semiconductors : growth, electronic properties, and applications, Pergamon, Oxford, 1975, Chap. 4
  9. M.Gorska, R. Reaulieu, J.J. Loferski, B. Roessler, Thin Solid Films 67, 341 (1980) https://doi.org/10.1016/0040-6090(80)90467-8
  10. K. Hattori, K. Akamatsu, N. Kamegashira, J. Appl, Phys. 71,3414 (1992) https://doi.org/10.1063/1.350938
  11. A. Lopez-Otero, Thin Solid Films 49, 3 (1987) https://doi.org/10.1016/0040-6090(78)90309-7
  12. H.S. Kim, Dr. Thesis, Kwangju, Chosun University, 1998
  13. R.H. Photoconductivity of solids, Wiley, New York, 1969, p 391
  14. J.L. Shay, B. Tell, L.M. Schiavone, H.M. Kasper, F. Thiel, Phys. Rev. B 9,1719 (1974) https://doi.org/10.1103/PhysRevB.9.1719
  15. K. Okamoto, K. Kinoshita, Solid-State Electron. 19, 31 (1976) https://doi.org/10.1016/0038-1101(76)90129-5
  16. R.A. Smitt, Semiconductor, 2nd edition, Cambridge University, Cambridge, 1978, p 72
  17. Y.P. Varshni, Physica 34,149 (1967) https://doi.org/10.1016/0031-8914(67)90062-6
  18. N.S. Orlova, G.A. Turtsevich, O.E. Kochkarik, Phys. Status. Solidi. A 118, 141 (1990) https://doi.org/10.1002/pssa.2211180115
  19. J.L. Shay, B. Tell, H.M. Kasper, L.M. Schiavone, Phys. Rev. B 7, 4485 (1973) https://doi.org/10.1103/PhysRevB.7.4485
  20. B. Segall, D.T.F. Marple, In: M. Aven, J.S. Prener, edtors, Physics and chemistry of II-VI compounds, North-Holland, Amsterdam, 1967, Chap 7, p 345