DOI QR코드

DOI QR Code

Effects of Brazing Processing Condition on Mechanical Properties and Reliability of Si3N/S.S. 316 Joints

브레이징 접합공정 조건이 SiN4/S.S. 316 접합체의 기계적 특성 및 신뢰도에 미치는 영향

  • 장희석 (한양대학교 세라믹공학과) ;
  • 박상환 (한국과학기술연구원 복합기능세라믹스연구센터) ;
  • 최성철 (한양대학교 세라믹공학과)
  • Published : 2002.01.01

Abstract

The microstructure change of brazed $Si_3N_4$/Stainless steel 316 joint with Cu buffer layer were examined to clarify the effects of brazing process conditions such as brazing time and temperature on the mechanical properties and reliability of brazed joints. For the brazed joint above 900${\circ}C$, the Cu buffer layer was completely dissolved into brazing alloy and the thickness of reaction product formed at $Si_3N_4$/brazing alloy joint interface was abruptly increased, which could increase the amounts of residual stress developed in the joint. The fracture strength of brazed $Si_3N_4$/Stainless steel 316 joint with Cu buffer layer at 950${\circ}C$ was much reduced comparing to those of joints brazed at the lower temperature. But, it was found that the effects of brazing time was not critical on the mechanical properties as well as the reliability of $Si_3N_4$/Stainless steel 316 joint with Cu buffer layer brazed at the temperature below 900${\circ}C$.

활성 금속 브레이징법의 공정변수인 브레이징 온도 및 시간의 변화가 Cu buffer layer를 사용한 $Si_3N_4$Stainless steel 316 접합체의 기계적 특성 및 신뢰도에 미치는 영향을 규명하기 위하여 브레이징 조건 변화에 따른 접합계면 미세구조 변화를 조사하였다. 900${\circ}C$ 이상의 온도에서 브레이징 된 접합체에서는 Cu buffer layer가 브레이징 합금에 용해되어 연속 Cu층을 유지하지 못하였으며, $Si_3N_4$/brazing alloy 계면에서 계면 반응물 층의 두계도 급격히 증가하였다. 950${\circ}C$에서 브레이징된 Cu buffer layer를 사용한 $Si_3N_4$/Stainless steel 316 접합체의 파괴강도는 접합체 내 잔류응력의 증가로 급격히 감소하였다. 950${\circ}C$ 이하의 온도에서 브레이징 시간의 변화는 Cu buffer layer를 사용한 $Si_3N_4$/Stainless steel 316 접합체의 파괴강도 및 파괴경로에 큰 영향을 미치지 못하였다.

Keywords

References

  1. J. B. Watchman, 'Mechanical Properties of Ceramics,' John wiley & sons (1996)
  2. M. L. Santella, 'A Review of Techniques for Joining Advanced Ceramics,' Ceram. Bull., 71 [6] 947-54 (1992)
  3. C. H. Bates, 'Joining of Nonoxide Ceramics for High temperature Applications,' Ceram. Butl., 69 [3] 350-56 (1990)
  4. S. D. Peteves, 'Joining Nitride Ceramics,' Ceram. Int., 22 527-33 (1996) https://doi.org/10.1016/0272-8842(95)00134-4
  5. M. G. Nicholas, 'Active Metal Brazing,' Br. Ceram. Trans. J., 85 144-46 (1986)
  6. W. B. Hanson, K. I. Ironside and J. A. Pernie, 'Active Metal Brazing of Zirconia,' Acta Materiatia, 48 4673-76 (2000) https://doi.org/10.1016/S1359-6454(00)00256-1
  7. A. H. ElSawy and M. F. Fahmy, 'Brazing of $Si_3N_4$ Ceramic to Copper,' J. Material Processing Technotogy, 77 266-72 (1998) https://doi.org/10.1016/S0924-0136(97)00427-5
  8. K. Suganuma, 'Influence of Shape and Size on Residual Stress in Ceramic/Metal Joining,' J. Mater. Sci., 22 [8] 2702-06 (1987) https://doi.org/10.1007/BF01086460
  9. S. I. Tanaka, 'Residual Stress Relaxation in $Si_3N_4$/Metal Joined System. Metal ceramic Joints,' MRS Int'I Meeting on Advanced Materiats, 8 125-30 (1988)
  10. T. W. Kim, H. S. Chang and S. W. Park, 'Mechanical Properties of $Si_3N_4$/Steel Joint with NiInterlayer,' ACS. Ceram.Ene. & Sci. Proceedings, 11 321-25 (2001)
  11. S. M. Johnson, 'Mechanical Behavior of Brazed Silicon Nitride,' ACS. Ceramic Engineering & Science Proceedings, 10 1846-53 (1989) https://doi.org/10.1002/9780470310557.ch37
  12. Binary Alloy Phase Diagrams, ASM., 1 19 (1986)