Isolation and Partial Characterization of a 50 kDa Hemin-regulated Cell Envelope Protein from Prevotella nigrescens

Prevotella nigrescens에서의 Hemin조절 세포막 단백질의 순수분리 및 특성분석

  • Kim, Kyung-Mi (Department of Periodontology, School of Dentistry, Pusan National University) ;
  • Choi, Jeom-Il (Department of Periodontology, School of Dentistry, Pusan National University) ;
  • Kim, Sung-Jo (Department of Periodontology, School of Dentistry, Pusan National University)
  • 김경미 (부산대학교 치과대학 치주과학교실) ;
  • 최점일 (부산대학교 치과대학 치주과학교실) ;
  • 김성조 (부산대학교 치과대학 치주과학교실)
  • Published : 2002.06.30

Abstract

In the study presented here, identification, purification, and partial characterization of a hemin-regulated protein in Prevotella nigrescens were carried out. The results of this study confirm that the availability of hemin influences the expression of a selected membrane protein as well as the growth rate of P. nigrescens ATCC 33563. The 50 kDa cell envelope associated protein, whose expression is hemin regulated, is considered to be a putative hemin-binding protein from P. nigrescens. Disulfide bonds were not present in this protein, and N'-terminal amino acid sequence analysis revealed that this protein belongs to a new, so far undescribed protein. The 50 kDa protein was found to be rich in hydrophilic amino acids, with glycine comprising approximately 60% of the total amino acids. The study described here is the first to identify, purify, and biochemically characterize a putative hemin-binding protein from P. nigrescens. Work is in progress to further characterize the molecular structure of this protein.

Keywords

References

  1. Bullen JJ. The significance of iron in infection. Rev Infect Dis, 1981;3:1127-1138 https://doi.org/10.1093/clinids/3.6.1127
  2. Weinberg ED. Iron withholding: a defense against infection and neoplasia. Physiol Rev, 1984;64:65-102 https://doi.org/10.1152/physrev.1984.64.1.65
  3. Finkelstein RA, Sciortino CV, McIntosh MA. Role of iron in microbe-host interactions. Rev Infect Dis, 1983;5:s759-s777 https://doi.org/10.1093/clinids/5.Supplement_4.S759
  4. Koskelo P, Muller Eberhard U. Interaction of porphyrins with proteins. Semin Hematol, 1977;14:221-226
  5. Laurell CB, Gronvall C. Haptoglobins. Adv Clin Chem, 1962;5:135-172
  6. Martinez JL, Delgado Iribarren A, Baquero F. Mechanisms of iron acquisition and bacterial virulence. FEMS Microbiol Rev, 1990;75:45-56 https://doi.org/10.1111/j.1574-6968.1990.tb04085.x
  7. Muller Eberhard U, Morgan WT. Porphyrin-binding protein in serum. Ann NY Acad Sci, 1975;244:624-649 https://doi.org/10.1111/j.1749-6632.1975.tb41558.x
  8. Seery VL, Muller Eberhard U. Binding of porphyrins to rabbit hemopexin and albumin. J Biol Chem, 1973;248:3796-3800
  9. Seery VL, Muller Eberhard U. Binding of porphyrins to rabbit hemopexin and albumin. J Biol Chem, 1973;248:3796-3800
  10. Crosa JH. Genetics and molecular biology of siderophore-mediated iron transport in bacteria. Microbiol Lett, 1989;53:517-530
  11. Schryvers AB, BC Lee. Comparative analysis of the transferrin and lactoferrin binding proteins in the family Neisseriaceae. Can J Microbiol 1989;35:409-415 https://doi.org/10.1139/m89-063
  12. Gonzalez GC, DI Caamano, AB Schryvers. Identification and characterization of a porcine-specific transferrin receptor in Actinobacillus pleuropneumoniae. Mol Microbiol, 1990;4:1173-1179 https://doi.org/10.1111/j.1365-2958.1990.tb00692.x
  13. Yu R-H, SD Gray-Owen, J Ogunnariwo, AB Schryvers. Interraction of ruminant transferrin receptors in bovine isolates of Pasteurella haemolytica and Haemophilus somnus. Infect Immun, 1992;60:2992-2994
  14. Schryvers AB, S Gray-Owen. Iron acquisition in Haemophilus influenzae; receptors for human transferrin. J Infect Dis, 1992;165:s103-s104 https://doi.org/10.1093/infdis/165-Supplement_1-S103
  15. Ogunnariwo JA, AB Schryvers. Correlation between the ability of Haemophilus paragallinarum to acquire ovotransferrin-bond iron and the expresssion of ovotransferrin-specific receptors. Avian Dis, 1992;36:655-663 https://doi.org/10.2307/1591761
  16. Griffith E. The iron uptake systems of pathogenic bacteria. In: Bullen J. J. and Griffiths, E. eds. Iron and infection. New York: John Willey & Sons, 1987;69-137
  17. Neilands JB. Microbial envelope proteins related to iron. Ann Rev Microbiol, 1982;36:285-309 https://doi.org/10.1146/annurev.mi.36.100182.001441
  18. Schryvers AB. Identification of the transferrin and lactoferrin binding proteins in Haemophilus influenzae. J Med Microbiol, 1989;29:121-130 https://doi.org/10.1099/00222615-29-2-121
  19. Tsai J, DW Dyer, PF Sparling. Loss of transferrin receptor activity in Neisseria meningitidis correlates with inability to use transferrin as an iron source. Infect Immun, 1988;56:3132-3138
  20. Bramanti TE, Holt SC. Hemin uptake in Porphyromonas gingivalis: Omp26 is a hemin-binding surface protein. J Bacteriol, 1993;175:7413-7420. https://doi.org/10.1128/jb.175.22.7413-7420.1993
  21. Coulton JW, Pang JCS. Transport of hemin by Hemophilus influenzae type b. Curr Microbiol, 1983;9:93-98 https://doi.org/10.1007/BF01568915
  22. Chu L, Song M, Holt SC. Effect of iron regulation on expression and hemin-binding function of outer-sheath proteins from Treponema denticola. Microb Pathog, 1994;16:321-335 https://doi.org/10.1006/mpat.1994.1033
  23. Fujimura S, Shibata Y, Hirai K, Nakamura T. Some binding properties of the envelope of Porphyromonas gingivalis to hemoglobin. FEMS Immunol Med Microbiol, 1995;10:109-114 https://doi.org/10.1111/j.1574-695X.1995.tb00018.x
  24. Hanson MS, Hansen EJ. Molecular cloning, partial purification, and characterization of a hemin-binding lipoprotein from Haemophilus influenza type b. Mol Microbiol, 1991;5:267-278 https://doi.org/10.1111/j.1365-2958.1991.tb02107.x
  25. Lee BC. Isolation of heamin-binding proteins of Neisseria gonorrheae. J Med Microbiol, 1992;36:121-127 https://doi.org/10.1099/00222615-36-2-121
  26. Lee BC. Isolation of an outer membrane hemin-binding protein of Hemophilus influenzae type b. Infect Immun, 1992;60:810-816
  27. Morse SA, Chen C-Y, LeFaopu A, Mietzner TA. A potential role for the major iron-regulated protein expressed by pathogenic Neisseria spp. Rev Inf Dis, 1988;10:s306-s310 https://doi.org/10.1093/cid/10.Supplement_2.S306
  28. Otto BR, Sparrius M, Verweij-van Vught AMJJ, MacLaren DM. Iron-regulated outer membrane protein of Bacteroides fragilis involved in heme uptake. Infect Immun, 1990;58:3954-3958
  29. Grenier D. Hemin-binding property of Porphyromonas gingivalis outer membranes. FEMS Microbiol Lett, 1991;77:45-50 https://doi.org/10.1111/j.1574-6968.1991.tb04319.x
  30. Smalley JW, Birss AJ, McKee AS, Marsh PD. Hemin-binding proteins of Porphyromonas gingivalis W50 grown in a chemostat under haemin-limitation. J Gen Microbiol, 1993;139:2145-2150 https://doi.org/10.1099/00221287-139-9-2145
  31. Stugard CE, Daskaleros PA, Payne SM. A 101-kilodalton heme-binding protein associated with Congo red binding and virulence of Shigella flexneri and enteroinvasive Escherichia coli strains. Infect Immun, 1989;57:3534-3539
  32. Hanson MS, Slaughter C. Hansen E. The hbpA gene of Haemophilus influenza type b encodes a heme-binding lipoprotein conserved among heme-dependent Haemophilus species. Infect Immun, 1992;60:2257-2266
  33. Scott D, Siboo IR, Chan ECS, Klitorinos A, Siboo R. Binding of hemin and congo red by oral hemolytic spirochetes. Oral Microbiol Immunol, 1993;8:245-250 https://doi.org/10.1111/j.1399-302X.1993.tb00568.x
  34. Pendrak ML, RD Perry. Characterization of a haemin-storage reservoirs of hemin and inorganic iron in Yersinia pestis. Infect Immun, 1991;61:32-39
  35. Perry RD, TS Lucier, DJ Sikkema, RR Brubaker. Storage reservoirs of hemin and inorganic iron in Yersinia pestis. Infect Immun, 1993;61:32-39
  36. Maciver I, O'Reilly T, Brown MRW. Porphyrin ring source can alter the outer membrane protein profile of non-typeable Hemophilus influenzae. J Med Microbiol, 1990;31:163-168 https://doi.org/10.1099/00222615-31-3-163
  37. Williams P, Brown MRW. Influence of iron restriction on growth and the expression of outer membrane proteins in Hemophilus influenzae and H. parainfluenzae. FEMS Microbiol Lett, 1985;33:153-157
  38. Bramanti TE, Holt SC. Iron-regulated outer membrane proteins in the periodontopathic bacterium Bacteroids gingivalis. Biochem Biophys Res Commun, 1990;166:1146-1154 https://doi.org/10.1016/0006-291X(90)90986-W
  39. Shah HN, Gharbia SE. Proposal of a new species Prevotella nigrescens sp. nov. among strains previously classified as P. intermedia. FEMS Immunol Med Microbiol, 1993;6:97 https://doi.org/10.1111/j.1574-695X.1993.tb00309.x
  40. Okamoto M, Maeda N, Kondo K, Leung KP. Hemolytic and hemagglutinating activities of Prevotella intermedia and Prevotella nigrescens. FEMS Microbiol Lett, 1999;178:299-304 https://doi.org/10.1111/j.1574-6968.1999.tb08691.x
  41. Matto J, Asikainen S, Vaisanen ML, Von Troil Linden B, Kononen E, Saarela M, Salminen K, Finegold SM, Jousimies Somer H. Beta-lactamase production in Prevotella intermedia, Prevotella nigrescens, and Prevotella pallens genotypes and in vitro susceptibilities to selected antimicrobial agents. Antimicrob Agents Chemother, 1999;43:2383-2388
  42. Andres MT, Chung WO, Roberts MC, Fierro JF. Antimicrobial susceptibilities of Porphyromonas gingivalis, Prevotella intermedia, and Prevotella nigrescens spp. isolated in Spain. Antimicrob Agents Chemother, 1998;42:3022-3023
  43. Baumgartner JC, Bae KS, Xia T, Whitt J, David LL. Sodium dodecyl sulfatepolyacrylamide gel electrophoresis and polymerase chain reaction for differentiation of Prevotella intermedia and nigrescens. J Endod, 1999;25:324-328. https://doi.org/10.1016/S0099-2399(06)81164-7
  44. Conrads G, Pelz K, Hughes B, Seyfarth I, Devine DA. Optimized oligonucleotides for the differentiation of Prevotella intermedia and Prevotella nigrescens. Oral Microbiol Immunol, 1997;12:117-120 https://doi.org/10.1111/j.1399-302X.1997.tb00627.x
  45. Premaraj T, Kato N, Fukui K, Kato H, Watanabe K. Use of PCR and sodium dodecyl sulfate-polyacrylamide gel electrophoresis techniques for differentiation of Prevotella intermedia sensu stricto and Prevotella nigrescens. J Clin Microbiol, 1999;37:1057-1061
  46. Guillot E, Mouton C. PCR-DNA probe assays for identification and detection of Prevotella intermedia sensu stricto and Prevotella nigrescens. J Clin Microbiol, 1997;35:1876-1882
  47. Debelian GJ, Olsen I, Tronstad L. Electrophoresis of whole-cell soluble proteins of microorganisms isolated from bacteremias in endodontic therapy. Eur J Oral Sci, 1996;104:540-546 https://doi.org/10.1111/j.1600-0722.1996.tb00139.x
  48. Gharbia SE, Haapasalo M, Shah HN, Kotiranta A. Characterization of Prevotella intermedia and nigrescens isolates from periodontic and endodontic infections. J Periodontol, 1994;65:56-61 https://doi.org/10.1902/jop.1994.65.1.56
  49. Kennel W, Holt SC. Comparative studies of the outer membranes of Bacteroides gingivalis strains ATCC 33277, W50, W83, 381. Oral Microbiol Immunol, 1990;5:121-130 https://doi.org/10.1111/j.1399-302X.1990.tb00409.x
  50. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London), 1970;227:680-685 https://doi.org/10.1038/227680a0
  51. Hager DA, Burgess RR. Elution of proteins from sodium dodecyl sulfatepolyacrylamide gels, removal of sodium dodecyl sulfate, and renaturation of enzymatic activity: results with Sigma subunit of Escherichia coli RNA polymerase, wheat germ DNA topoisomerase, and other enzymes. Anal Biochem, 1980;109:76-86 https://doi.org/10.1016/0003-2697(80)90013-5
  52. Towbin H, Staehelin, TandGordon. Electrophoretic transfer of proteins from polyacylamide gels to nitrocellulose sheets:procedure and some applications. Proc Natl Acad Sci USA, 1984;76:4350-4354 https://doi.org/10.1073/pnas.76.9.4350