Solubility Measurement and its Correlation of Disperse Dye in Supercritical HFC-134a

초임계 HFC-134a에 대한 분산염료의 용해도 측정과 모델링

  • Park, Min-Woo (School of Chemical Engineering and Technology, Yeungnam University) ;
  • Bae, Hyo-Kwang (School of Chemical Engineering and Technology, Yeungnam University)
  • 박민우 (영남대학교 공과대학 응용화학공학부) ;
  • 배효광 (영남대학교 공과대학 응용화학공학부)
  • Received : 2002.08.27
  • Accepted : 2002.09.12
  • Published : 2002.12.01

Abstract

The supercritical dyeing process has been gaining the increasing importance because of environment reason. For further development of this process, it is needed to measure the solubility in supercritical fluids in the extensive ranges of temperature and pressure. In this study, using the semi-flow type apparatus consisted of supercritical fluid equilibrium cell, the solubility of disperse dye(C.I. disperse red 60) in supercritical HFC-134a has been measured at the temperatures of 383.2 K and 413.2 K, and in the pressure range of 50 bar to 160 bar. The solubility data are, with good agreement, correlated by an expanded liquid model which considers the supercritical fluid as compressed liquid.

폴리에스터의 염색공정에서 발생하는 폐수문제를 근원적으로 해결하기 위해서 초임계 유체를 이용한 건식염색기술이 관심의 대상이 되고 있다. 본 연구에서는 반 유통형인 초임계유체 평형실험장치를 이용하여 초임계 상태의 HFC-134a에 대한 분산염료인 C. I. disperse red 60의 용해도를 382.2 K와 413.2 K의 온도와 50, 70, 100, 130, 160 bar의 압력에서 측정하였다. 초임계유체를 고압의 액체로 간주하는 확장액체모델에 측정된 데이터들을 상관하면 실험값과 계산값이 잘 일치하였다.

Keywords

Acknowledgement

Supported by : 영남대학교

References

  1. The Journal of Supercritical Fluids v.22 no.1 Dye distribution in supercritical dyeing with carbon dioxide Park, M. W;Bae, H. K https://doi.org/10.1016/S0896-8446(01)00102-4
  2. Fluid Phase Equilibria v.179 no.1-2 Lee, J. W;Park, M. W;Bae, H. K https://doi.org/10.1016/S0378-3812(01)00409-5
  3. The Journal of Supercritical Fluids v.8 no.2 High-pressure investigations on the solubility of dispersion dyestuffs in supercritical gases by VIS/NIR-spectroscopy. Part I - 1,4-Bis-(octadecylamino)-9,10-anthraquinone and disperse orange in CO Haarhaus, U;Swidersky, P;Schneider, G. M https://doi.org/10.1016/0896-8446(95)90022-5
  4. Korean Journal of Chemical Engineering v.15 no.1 Measurement and Correlation of Solubility of Disperse Anthraquinone and Azo Dyes in Supercritical Carbon Dioxide Joung, S. N;Shin, H. Y;Park, Y. H;Yoo, K. P https://doi.org/10.1007/BF02705309
  5. Journal of Chemical & Engineering Data v.42 no.3 Solubility of Disperse Dyes in Supercritical Carbon Dioxide Ozcan, A. S;Clifford, A. A;Bartle, K. D https://doi.org/10.1021/je960337+
  6. Journal of Chemical & Engineering Data v.34 no.2 Kramer, A;Thodos, G https://doi.org/10.1021/je00056a011
  7. HWAHAK KONGHAK v.34 Bae, H. K;Hur, B. K
  8. Journal of Chemical & Engineering Data v.44 no.4 Solubility Measurement of Disperse Dyes in Supercritical Carbon Dioxide Lee, J. W;Min, J. M;Bae, H. K https://doi.org/10.1021/je9802930
  9. Textile Research Journal v.63 no.3 Dyeing of textiles in supercritical carbon dioxide Saus, W;Knittel, D;Schollmeyer, E https://doi.org/10.1177/004051759306300302
  10. Textile Research Journal v.64 no.7 Gebert, B;Saus, W;Knittel, D;Buschmann, H. J;Schollmeyer, E https://doi.org/10.1177/004051759406400701
  11. Melliand International v.2 Bach, E;Cleve, E;Schollmeyer, E
  12. Melliand International v.4 Bach, E;Cleve, E;Schollmeyer, E
  13. Industrial & Engineering Chemistry Research v.27 no.8 ADAPTATION OF THE FLORY-HUGGINS THEORY FOR MODELING SUPERCRITICAL SOLUBILITIES OF SOLIDS Krammer. A;Thodos, G https://doi.org/10.1021/ie00080a026
  14. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN v.25 no.6 Iwai, Y;Koga, Y;Fukuda, T https://doi.org/10.1252/jcej.25.757
  15. Molecular Thermodynamics of Fluid Phase Equilibria(2nd ed.) Prausntz, J. M
  16. Polymer Engineering and Science v.14 no.2 METHOD FOR ESTIMATING BOTH THE SOLUBILITY PARAMETERS AND MOLAR VOLUMES OF LIQUIDS Fedors, R. E https://doi.org/10.1002/pen.760140211
  17. Science v.162 no.3849 Gidding, J. C;Myers, M. N;McLaren, L;Keller, R. A https://doi.org/10.1126/science.162.3849.67