Enhancement in the Amine Resistance of Membranes for Membrane Contactors by Plasma Treatment

플라즈마를 이용한 막접촉기용 막의 아민 용액에 대한 저항성 향상

  • Choi, Seung-Hak (Department of Chemical Engineering, Sun-Moon University) ;
  • Oh, Sae-Joong (Department of Chemical Engineering, Sun-Moon University) ;
  • Cho, Nam-Joon (Department of Applied Chemical Engineering, Korea University of Technology and Education) ;
  • Koo, Ja-Kyung (Department of Applied Chemical Engineering, Korea University of Technology and Education)
  • 최승학 (선문대학교 재료화학공학부) ;
  • 오세중 (선문대학교 재료화학공학부) ;
  • 조남준 (한국과학기술교육대학교 응용화학공학과) ;
  • 구자경 (한국과학기술교육대학교 응용화학공학과)
  • Received : 2002.09.10
  • Accepted : 2002.09.27
  • Published : 2002.12.01

Abstract

Celgard and Durapore membranes were plasma-treated to enhance the hydrophobicity and durability to amine solution. The plasma gases or vapors used were $CF_4$, Hexafluorobenzene(HFP), Pentafluoropyridine(PFP) and Hexamethyldisiloxane(HMDS). The surface structure of plasma treated membranes was analyzed by FT-IR spectra. The contact angles of plasma treated Celgard and Durapore were dependent of the plasma gases used. $CF_4$ and HMDS plasma increased the contact angles of Celgard and Durapore, while HFB and PFP plasma decreased the contact angles. Durability to monoethanolamine(MEA) solution was enhanced for $CF_4$ plasma-treated Durapore, while the durability was not good for plasma-treated Celgard.

Celgard 및 Durapore 막을 플라즈마로 처리하여 막의 소수성 및 아민용액에 대한 저항성을 조사하였다. 플라즈마 기체(또는 증기)로는 $CF_4$, Hexafluorobenzene(HFP), Pentafluoropyridine(PFP) 그리고 Hexamethyldisiloxane(HMDS)를 사용하였다. 플라즈마로 처리시킨 막의 표면구조는 FT-IR 스펙트럼을 이용하여 분석하였다. 플라즈마로 처리시킨 막의 물에 대한 접촉각은 플라즈마 기체의 종류에 따라 다른 특성을 나타내었다. Celgard와 Durapore 모두 HFB이나 PFP의 플라즈마로 처리하였을 경우에는 접촉각이 감소하였으나, $CF_4$ 또는 HMDS의 플라즈마로 처리하였을 경우에는 플라즈마로 처리하지 않은 경우보다 접촉각이 증가하였다. Monoethanolamine(MEA)용액에 대한 저항성은 Celgard의 경우에는 플라즈마로 처리하였을 경우가 순수한 Celgard보다 낮았으나, Durapore는 $CF_4$ 플라즈마로 처리하였을 경우 MEA에 대한 저항성이 증대되었다.

Keywords

Acknowledgement

Supported by : 에너지관리공단

References

  1. Polymer v.22 no.3 Dynamics of macromolecular chains. 13C spin relaxation study of short-chain polystyrenes in deutero-chloroform solution Lee, J. W;Yoon, H. G;Suh, K. S https://doi.org/10.1016/0032-3861(81)90042-2
  2. Macromolecules v.21 no.2 SURFACE-SELECTIVE HYDROXYLATION OF POLYPROPYLENE Lee, K. W;McCarthy, T. J https://doi.org/10.1021/ma00180a005
  3. Journal of Applied Polymer Science v.41 no.56 Mehta, I. K;Kumar, S;Chauhan, G. S;Misra, B. N https://doi.org/10.1002/app.1990.070410526
  4. Journal of Applied Polymer Science v.57 no.8 Introduction of functional groups on polyethylene surfaces by a carbon dioxide plasma treatment Johannes, G. A;Terlingen, J. G;Gerrilsen H. F;Hoffman, A. S;Feijen, J https://doi.org/10.1002/app.1995.070570809
  5. Journal of Adhesion Science and Technology v.9 no.7 Role of helium plasma pretreatment in the stability of the wettability, adhesion and mechanical properties of ammonia plasma-treated polymers. Application to the Al-polypropylene system Tatoulian, M;Arefikhonsari, F;Mabillerouger, I;Gheorgju, M;Bouchier D https://doi.org/10.1163/156856195X00798
  6. Applied Surface Science v.72 no.1 Surface modifications of polypropylene after in-situ Ar and N2 plasma treatments: an XPS study Collaud, M;Nowak, S;Kuttel, O. M;Groning, P;Schlapbach, L https://doi.org/10.1016/0169-4332(93)90038-D
  7. Journal of Applied Polymer Science v.50 no.2 Plasma treatment of polypropylene surfaces: Characterization by contact-angle measurements Wittenbeck, P;Wokaun, A https://doi.org/10.1002/app.1993.070500201
  8. Journal of Applied Polymer Science v.49 no.10 Surface modification of poly(ethylene) in an rf downstream remote plasma reactor Hollaender, A;Behnish, J;Zimmermann, H https://doi.org/10.1002/app.1993.070491016
  9. Journal of Membrane Science v.194 no.1 Analysis of CO2 removal by hollow fiber membrane contactors Lee, Y. T;Noble, R. D;Yeom, B. Y;Park, Y. I;Lee, K. H https://doi.org/10.1016/S0376-7388(01)00524-5
  10. HWAHAK KONGHAK v.39 Yeon, S. H;Seo, B. K;Park, Y. I;Lee, K. H
  11. Separation Science and Technology v.32 no.15 Analysis on a hydrophobic hollow-fiber membrane absorber and experimental observations of CO[sb 2] removal by enhanced absorption Chun, M. S;Lee, K. H https://doi.org/10.1080/01496399708000779
  12. Journal of Membrane Science v.112 no.2 Absorption of carbon dioxide into aqueous solutions using hollow fiber membrane contactors Rangwala, H. A https://doi.org/10.1016/0376-7388(95)00293-6
  13. HWAHAK KONGHAK v.36 Yeom, B. Y;Kim, M. S;Lee, Y. T;Park, Y. I;Lee, K. H
  14. Journal of Membrane Science v.96 no.3 Absorption of carbon monoxide in hollow fiber membranes Ghosh. A. C;Borthakur, S;Dutta, N. N https://doi.org/10.1016/0376-7388(94)00108-1
  15. Journal of Membrane Science v.195 no.2 Extraction of 4-nitrophenol from 1-octanol into aqueous solution in a hollow fiber liquid contactor Peretti, S. W;Tompkins, C. J;Goodall, J. L;Michaels, A. S https://doi.org/10.1016/S0376-7388(01)00566-X
  16. Journal of Membrane Science v.168 no.1-2 Gawronski, R;Wrzesinska, B https://doi.org/10.1016/S0376-7388(99)00317-8
  17. Separation Science and Technology v.34 no.8 Lee, J. C;Jeong, J. K;Park, J. T;Youn, I. J;Chung, H. S https://doi.org/10.1080/01496399909353765
  18. Separation Science and Technology v.34 no.4 Membrane Extraction of Phenol With Linear Monoalcyl Cyclohexane Stevanovic, S. M;Mitrovic, M. V;Korenman, Y. I https://doi.org/10.1081/SS-100100672
  19. Fundamentals of Plasma Chemistry and Technology Boenig, H. V
  20. Plasma Polymerization Yasuda, H
  21. Journal of Applied Polymer Science v.57 no.11 Permeation of simple gases through plasma polymerized films from fluorine-containing monomers Oh, S. J;Zeng, Y;Koo, J. K;Zurawsky, W. P https://doi.org/10.1002/app.1995.070571103
  22. Journal of Membrane Science v.175 no.2 A study on the development of composite membranes for the separation of organic vapors Sohn, W. I;Ryu, D. H;Koo, J. K;Oh, S. J https://doi.org/10.1016/S0376-7388(00)00417-8