Scavenging Effect of Korean Medicinal Plants on the Peroxynitrite and Total ROS

  • Kang, Hye-Sook (Faculty of Food Science and Biotechnology, Pukyong National University) ;
  • Chung, Hae-Young (College of Pharmacy, Pusan National University) ;
  • Son, Kun-Ho (Department of Food and Nutrition, Andong National University) ;
  • Kang, Sam-Sik (Natural Products Research Institute, Seoul National University) ;
  • Choi, Jae-Sue (Faculty of Food Science and Biotechnology, Pukyong National University)
  • Published : 2003.06.01

Abstract

To discover the sources with antioxidative activity in traditional medicines, 100 extracts of Korean medicinal plants were screened for their scavenging effect on peroxynitrite $(ONOO^{-})$ and total reactive oxygen species (ROS). The potency of total ROS scavenging activity was shown in the extracts of 25 plants, and 4 of their species, Macleaya cordata R. Br., Salvia plebeia R. Br., Cassia tora L. and Angelica gigas Nakai, had a greater effect with $IC_{50}$ values of $1.7{\pm}0.36$, $4.3{\pm}1.08$, $4.9{\pm}0.17$ and $5.8{\pm}1.01\;{\mu}g/ml$, respectively, than that of trolox, positive control $(7.61{\pm}0.12\;{\mu}g/ml)$. Another 35 extracts exhibited inhibitory effect of below 50 percent at $100\;{\mu}g/ml$ of sample concentrations on total ROS, while the rest observed total ROS generators rather than scavengers. The peroxynitrite scavenging activities were observed in the greater part of the plants tested. Five of them, Schisandra chinensis Baill, Campsis grandiflora (Thunb.) K. Schum., Cedrela sinensis A. Juss., Pleuropterus multiflorus Turcz. and Veronica linariaefolia Pall represented scavenging activities on peroxynitrite twice as strong with $IC_{50}$ Values of $0.48{\pm}0.10$, $0.59{\pm}0.15$, $0.60{\pm}0.10$, $0.64{\pm}0.10$ and $0.91{\pm}0.23\;{\mu}g/ml$, respectively, as that of penicillamine $(1.72{\pm}0.05\;{\mu}g/ml)$, positive control. Consequently, 25 species of the entire plants tested, exhibited scavenging activities on total ROS and $ONOO^{-}$, Salvia plebeia R. Br., Macleaya cordata R. Br., Cassia tora L. and Angelica gigas Nakai exerted potent scavenging activities on both radicals.

Keywords

References

  1. Aruoma, O. I., Antioxidant actions of plant foods: use of oxidative DNA damage as a tool for studying antioxidant efficacy. Free Radical Res. 30, 419-427 (1999) https://doi.org/10.1080/10715769900300461
  2. Balavoine, G. G., and Geletii, Y. v., Peroxynitrite scavenging by different antioxidants. Part I: convenient assay. Nitric Oxide 3, 40-54 (1999) https://doi.org/10.1006/niox.1999.0206
  3. Beckman, J. S. and Koppenol, W. H., Nitric oxide, superoxide and peroxynitrite: the good, the bad and the ugly. Am. J Physiol. 271, C1424-C1437 (1996) https://doi.org/10.1152/ajpcell.1996.271.5.C1424
  4. Branen, AL., Toxicology and biochemistry ofbutylated hydroxyanisole and butylated hydroxytoluene. J. Am. Oil Chem. Soc. 52, 59-63 (1975) https://doi.org/10.1007/BF02901825
  5. Cheung, F., Siow, Y. L., Chen, W. Z., and O, K., Inhibitory effect of Ginkgo biloba extract on the expression of inducible nitric oxide synthase in endothelial cells. Biochem. Pharmacol. 58, 1665-1673 (1999) https://doi.org/10.1016/S0006-2952(99)00255-5
  6. Choi, J. S., Chung, H. Y, Jung, H. A., Park, H. J., and Yokozawa, T., Comparative evaluation of antioxidant potential of alatemin (2-hydroxyemodin) and emodin. J. Agric. Food Chem. 48, 6347-6351 (2000a) https://doi.org/10.1021/jf000936r
  7. Choi, J. S., Kang, H. S., Jung, H. A, Jung, J. H., and Kang, S. S., A new cyclic phenyllactarnide from Salvia miltiorrhiza. Fitoterapia 72, 30-34 (2001) https://doi.org/10.1016/S0367-326X(00)00248-3
  8. Choi, J. S., Lee, H. J., Park, K. Y., Ha, J. O., and Kang, S. S., In vitro antimutagenic effects of anthraquinone aglycones and naphfuopyrone glycosides from Cassia tora. Planta Med. 63(1), 11-14 (1997) https://doi.org/10.1055/s-2006-957593
  9. Choi, J. S., Lee, H. J., Park, K. Y., and Jung, G. O., In vitro antimutagenic effects of alatemin and isorubrofusarin gentiobioside from roasted Cassia tora. Nat. Prod. Sci. 4(2), 100-104 (1998)
  10. Choi, Y. E., Ahn, H., Ryu, J. H., Polyacetylenes from Angelica gigas and their inhibitory activity on nitric oxide synthesis in activated macrophages. Biol. Pharm. Bull. 23(7), 884-886 (2000b) https://doi.org/10.1248/bpb.23.884
  11. Chung, H. Y., Yokozawa, T., Soung, D. Y., Kye, I. S., and Baek, B. S., Peroxynitrite-scavenging activity of green tea tannin. J. Agric. Food Chem. 46, 4484-4486 (1998) https://doi.org/10.1021/jf980556u
  12. Follin, V. S., Sheichenko, V. I., Savina, A. A., Litovskaya, V. I. and Tolkachev, O. N., Cell cultured of Macleaya cordata-a producer of antimicrobialbenzo[c]phenanthridine alkaloids. Antibiot Khimioter 40(8), 17-22 (1995)
  13. Freeman, B. A., Biological sites and mechanism of free radical production, in Armstrong, D., Sohal, R., Culter, R. G., Slater, T. (eds.), Free radicals in molecular biology, aging, and disease, Raven Press, New York, 1984, pp. 43-52
  14. Han, K. S., Pharmacognosy, 4th ed. Dongmyungsa Press, Seoul, 1992, pp. 201-202
  15. Hatano, T., Uebayashi, H., Ito, H., Shiota, S., Tsuchiya, T., and Yoshida, T., Phenolic constituents of Cassia seeds and antibacterial effect of some naphthalenes and anthraquinones on methicillin-resistant Staphylococcus aureus. Chem. Pharm. Bull. 47(8), 1121-1127 (1999) https://doi.org/10.1248/cpb.47.1121
  16. Hermann, M., Kapiotis, S., Hofbauer, R., Exner, M., Seelos, C, Held, I. and Gmeiner, B., Salicylate inhibits LDL oxidation initiated by superoxide/nitric oxide radicals. FEBS Lett., 445, 212-214 (1999) https://doi.org/10.1016/S0014-5793(99)00043-5
  17. Kang, H. S., Chung, H. Y., Jung, J. H., Kang, S. S., and Choi, J. S., Antioxidant effect of Salvia miltiorrhiza. Arch. Pharm. Res. 20(5), 496-500 (1997) https://doi.org/10.1007/BF02973947
  18. Kang, H. S., Chung, H. Y., Byun, D. S., and Choi, J. S., Further isolation of antioxidative (+)-1-hydroxypinoresinol-I-O-\beta-D-glucoside from the rhizome of Salvia miltiorrhiza that acts on peroxynitrite, total ROS and 1,I-diphenyl-2-picrylhydrazyl radical. Arch. Pharm. Res. 26(1), 24-27 (2003) https://doi.org/10.1007/BF03179926
  19. Kang, S. Y., Lee, K. Y., Sung, S. H., Park, M. J., and Kim, Y. C., Coumarins isolated from Angelica gigas inhibit acetylcholinesterase: Structure-activity relationships. J. Nat. Prod. 64, 683-685 (2001) https://doi.org/10.1021/np000441w
  20. Kim, J. K., Illustrated natural drugs encyclopedia (color ed.) vol. 2, Namsandang, Seoul, 1997, pp. 38
  21. Kooy, N. w., Royall, J. A., Ischiropoulos, H., and Beckman, J. S., Peroxynitrite mediated oxidation of dihydrorhodamine 123. Free Radic. Bioi. Med. 16, 149-156 (1994) https://doi.org/10.1016/0891-5849(94)90138-4
  22. Lee, H. J., Park, J. C., and Choi, J. S., The ^{13}C-NMR assignment of nor-rubrofusarin having strong radical scavenging effect on 1,I-diphenyl-2-picrylhydrazyl radical. Nat. Prod. Sci. 4(2),9599 (1998)
  23. Miquel, J., CRC handbook of free radicals and antioxidants in biomedicine Vol. I, CRC press, Inc., Boca Raton, Florida, 1989, pp. 17-25
  24. Namba, T., Colored Illustrations of Wakan-Yaku, Vol. 1, Hoikusha Publishing Co. Ltd., 1980, pp 226
  25. Patel, R P., McAndrew, J., Sellak, H., White, C. R., Jo, H, Freeman, B. A., and Darley-Usmar, V.M., Biological aspects of reactive nitrogen species. Biochem. Biophys. Acta. 1411, 385-400 (1999) https://doi.org/10.1016/S0005-2728(99)00028-6
  26. Podrez, E. A, Schmitt, D., Hoff, H. F. and Hazen, S. L., Myeloperoxidase-generated reactive nitrogen species convert LDL into an atherogenic form in vitro. J Clin. Invest., 103, 1547-1560 (1999) https://doi.org/10.1172/JCI5549
  27. Porzel A, D. J. J., and Huneck, S., Gigasol and other coumarins from Angelica gigas. Phytochemistry 30(2), 710-712 (1991) https://doi.org/10.1016/0031-9422(91)83763-B