Abstract
Anti-aflatoxigenic studies on synthetic pyridione alkaloids were conducted. Seven derivatives using piperlongumine as a leading compound were prepared from 3,4,5-trimethoxycinnamic acid (TMCA). These derivatives were analyzed for their structural confrmation and purity by HPLC, GC, GC/MS and $1^H-NMR$. 1-piperidin-1-yl-3-(3,4,5-trimethoxyphenyl)propenone (1) reaction with piperidine; 1-morpholin-4-yl-3-(3,4,5-trimethoypenyl)propenone (2) with morpholine; 1-(3,5-dimethylpiperidin-1-yl)-3-(3,4,5-trimethoxyphenyl)propenone (3) with 3,5-dimethylpiperdine; 1-(2-methylpiperidine-1-yl)-3-(3,4,5-trimethoxyphenyl)propenone (4) with 2-methylpiperidine; 1-(3-hydroxypiperidin-1-yl)-3- (3,4,5-trimethoxyphenyl)propenone (5) with 3-hydroxypiperidine hydrochloride; 1-[3- (3,4,5-trimethoxyphenyl)acryloyl]piperidin-2-one (6) with ${\delta}-valerolactam;\; and\;ethyl\;1-[3-(3,4,5-trimethoxyphenyl)acyloyl]piperidine-4-carboxylate$ (7) with ethyl isonipectotate were synthesized respectively. All derivatives showed an inhibitory activity on aflatoxin $B_1$ production. In conclusion, we believe that they might be an agent for the control of mycotoxin in agricultural commodities.
필발 열매로부터 추출 및 분리한 piperlongurnine (1-[3-(3,4,5-trimethoxyphenyl)acryloyl]-5,6-dihydro-1H-pyridin-2-one)이 aflatoxin $B_1\;(AFB_1)$ 생성억제에 있어서 탁월한 효과가 입증되어 3,4,5-trimethoxycinnamic acid (TMCA)를 모체로 하여 1-piperidin-1-yl-3-(3,4,5-trimethoxyphenyl)propenone (1), 1-morpholin-4-yl-3-(3,4,5-trimetholfrphenyl)propenone (2), 1- (3,5-dimethylpiperidin-1-yl)-3-(3,4,5-trimethoxyphenyl)propenone (3), 1-(2-methylperidin-1-yl)-3-(3,4,5-trimethoxyphenyl)propenone (4), 1- (3-hydroxypiperidin-1-yl)-3-(3,4,5-trimethoxyphenyl)propenone (5), 1-[3-(3,4,5-trimethoxy-phenyl)acryloyl]piperidin-2-one (6) 및 ethyl 1-[3-(3,4,5-trimethoxyphenyl)acryloyl]piperidin-4-carboxylate (7)의 유도체를 합성하여 구조를 확인하고, 이 화합물들을 이용하여 $AFB_1$ 생성저해 효과를 측정하였다. Aspergillus flavus NRRL 2061로부터 생성되는 $AFB_1$ 생성저해에 대한 실험한 결과 모든 유도체 화합물에서 활성을 나타내었으며, 특히 화합물 (3)이 1000, 500, 250, 100및 $50\;{\mu}g/ml$에서 100, 95, 90, 53 및 10%의 생성저해를 나타냈다. 이러한 연구 결과 유도체 화합물 (3)은 항진균 독소제 개발을 위한 선도화합물로 이용하여 새로운 농약으로 개발이 가능할 것이라고 판단된다.