Characterization of Squalene Synthase Inhibitor Isolated from Curcuma longa

울금(Curcuma longa)으로부터 분리한 squalene synthase 저해물질의 특성

  • Choi, Sung-Won (Research Institute of Biotechnology, Green Biotech Co. Ltd.) ;
  • Yang, Jae-Sung (Research Institute of Biotechnology, Green Biotech Co. Ltd.) ;
  • Lee, Han-Seung (Directed Evolution Team, GenoFocus Inc.) ;
  • Kim, Dong-Seob (Department of Food Science, Miryang National University) ;
  • Bai, Dong-Hoon (Department of Food Engineering, Dankook University) ;
  • Yu, Ju-Hyun (Korean Culture Center of Microorganisms)
  • Published : 2003.04.01

Abstract

An inhibitor of squalene synthase, a key enzyme in the cholesterol biosynthetic pathways and a target for improved agents to lower plasma levels of low-density lipoprotein, was sequentially purified from Curcuma longa by acetone extraction, silica gel column chromatography, and sephadex LH-20 column chromatography. Active compound, YUF-01, was successfully purified and analyzed as $C_{20}H_{21}O_6$ by electron ionization mass spectrum. Through $^1H-NMR$ and $^{13}C-NMR$ analyses, YUF-01 was identified as curcumin, which showed strong inhibition of squalene synthase.

동맥경화증과 같은 심혈관 질환을 야기시키는 주요 위험요인인 혈중 콜레스테롤의 수준을 낮추기 위하여 콜레스테롤 생합성 과정의 속도조절단계 효소의 하나인 squalene synthase의 활성을 저해하는 물질을 분리 정제하여, 물질의 이화학적 특성과 생물학적 특성을 검토하였다. Squalene synthase 저해물질은 acetone extraction, ethyl acetate extraction, silica gel column chromatography, sephadex LH-20 column chromatography, 결정화 등을 이용하여 분리 정제하여 YUF-01을 얻었다. 기기분석을 통하여 구조분석을 행한 결과 YUF-01은 분자량 368, 분자식 $C_{20}H_{21}O_6$으로 분석되었으며 243과 421 nm 에서 UV-VIS 흡광을 나타내었고 $^{13}C$ NMR spectrum과 $^1H$ NMR spectrum을 검토하였을 때 aromatic ketone 구조인 curcuminoid 계통의 curcumin과 일치하였다. Squalene synthase에 대한 curcumin의 $IC_{50}$ 값은 $100{\mu}M$이었으며, non-competitive inhibitor로 작용하였다.

Keywords

References

  1. Young, S.G. and Parthasarathy, S. Why are low-density lipoproteins atherogenic? West J. Med. 160: 153-164(1994)
  2. Bruce, C., Sharp, D.S. and Tall, A.R. Relationship of HDL and coronary heart disease to a common amino acid polymorphism in the cholesteryl ester transfer protein in men with and without hypertriglyceridemia. J. Lipid Res. 39: 1071-1078 (1998)
  3. Gunstone, F.D., Harwood, J.L. and Padley, F.B. The role of fats in human nutrition, pp. 7-15. In: The Lipid Handbook. Padley, F.B. and Podmore, J. (eds.). Ellis Horwood, Chichester, UK (1985)
  4. Brown, M.S. and Goldstein, J.L. Multivalent feedback regulation of HMG-CoA reductase, a control mechanism coordinating isoprenoid synthesis and cell growth. J. Lipid Res. 21: 505-512 (1980)
  5. Spector, A.A. and Yorek, M.A. Membrane lipid composition and cellular function. J. Lipid Res. 26: 1015-1021 (1985)
  6. Heider, J.G., Pickens, C.E. and Kelly, L.A. Role of acyl CoA:Cholesterol acyltransferase in cholesterol absorption and its inhibition by 57-118 in the rabbit. J. Lipid Res. 24: 1127-1134 (1983)
  7. Crey, M.C., Sirtori, D.M. and Bliss, C.M. Lipid, digestion and adsoption. Ann. Rev. Physiol. 45: 651-658 (1983) https://doi.org/10.1146/annurev.ph.45.030183.003251
  8. Brown, M.S. and Goldstein, J.L. Regulation of plasma cholesterol by lipoprotein receptors. Science 212: 628-634 (1981) https://doi.org/10.1126/science.6261329
  9. Osborn, J.C. and Brewer, H.B. The plasma lipoproteins. Adv. Protein Chem. 31: 253-258 (1977) https://doi.org/10.1016/S0065-3233(08)60220-X
  10. Goldstein, D.S., Levinson, P.D., Zimlichman, R., Pitterman, A., Stull, R. and Keiser, H.R. Clonidine suppression testing in essential hypertention. Ann. Int. Med. 102: 42-48 (1985) https://doi.org/10.7326/0003-4819-102-1-42
  11. Insel, P.A. and Motulsky, H.J. A hypothesis linking intracellular sodium membrane receptors and hypertention. Life Sci. 34: 1009-1023 (1984) https://doi.org/10.1016/0024-3205(84)90013-4
  12. Croog, S.H., Levine, S., Testa, M.A., Brown, B., Bulpitt, C.J., Jekins, D., Klerman, G.L. and Willilams, G.H. The effects of antihypertensive therapy on the quality of life. New Engl. J. Med. 314: 1657-1664 (1986) https://doi.org/10.1056/NEJM198606263142602
  13. Brown, M.S. and Goldstein, J.L. A receptor-mediated pathway for cholesterol homeostasis. Science 232: 34-47 (1986) https://doi.org/10.1126/science.3513311
  14. Endo, A. The discovery and development of HMG-CoA reductase inhibitors. J. Lipid Res. 33: 1569-1577 (1992)
  15. Brown, G., Albert, J.J., Fisher, L.D., Schaefer, S.M., Lin, J.T., Kaplan, C., Zhao, X.O., Bisson, B.D., Fitzpatrick, V.F. and Dodge, H.T. Regression of coronary artery disease as a result of intensive lipid lowering therapy in men with high levels of apolipoprotein. New Engl. J. Med. 323: 1289-1295 (1990) https://doi.org/10.1056/NEJM199011083231901
  16. Kane, J.P., Malloy, M.J., Ports, T.A., Philips, N.R., Diehl, J.C. and Havel, R.J. Regression of coronary atherosclerosis during treatment of familia hypercholesterolemia with combined drug regimens. JAMA 264, 3007-3015 (1990) https://doi.org/10.1001/jama.264.23.3007
  17. Bergstrom, J.D., Krutz, M.M., Rew, D.J., Amend, A.M., Karkas, J.D., Bostedor, RD., Bansal, V.S., Dufresns, C., Middleworth, FLV, Hensens, O.D., Liesch, J.M., Zinc, D.L., Wilson, K.E., Onishi, J., Milligan, lA., Bills, G., Kaplan, L., Nallin, M., Jenskins, R.G., Huang, L., Meinz, M.S., Quinn, L., Burg, R.U., Kong, Y.L., Mochales, S., Mojena, M., Martin, I., Pelaez, F, Diez M.T. and Albert, A.W Zaragozic acids: A family of metabolites that are picomolar competitive inhibitors of squalene synthase. Proc. Natl. Acad. Sci. 90: 80-89 (1993) https://doi.org/10.1073/pnas.90.1.80
  18. Dawson, M.J., Farthing, J.E., Marshall, P.S., Middleton, R.E., O'Neill, M.J., Shuttleworth, A., Stylli, C., Tait, R.M., Taylor, P.M., Wildman, H.G., Buss, A.D., Langley, D. and Hayes, M.V. The squalestatins, novel inhibitors of squalene synthase produced by a species of Phoma. I. Taxonomy, fermentation, isolation, physicochemical properties and biological activity. J. Antibiotics 45: 639-647 (1992) https://doi.org/10.7164/antibiotics.45.639
  19. Sidebottom, P.J.R. Highcock, M., Lane, S.J., Procopiou, P.A. and Watson, N.S. The squalestatins, novel inhibitors of squalene synthase produced by a species of Phoma. II. Structure elucidation. J. Antibiotics 45: 648-658 (1992) https://doi.org/10.7164/antibiotics.45.648
  20. Baxter, A, Fitzgerald, B.J., Hutson, J.L., McCarthy, A.D., Motteram, J.M., Ross, B.C., Sapra, M., Snowden, M.A., Watson, N.S., Williarm, R.J. and Wright, C. Squalestatin I, a potent inhibitor of squalene synthase, which lower serum cholesterol in vivo. J. BioI. Chem. 267: 11705-11708 (1992)
  21. Popjak, G., Goodman, D.S., Cornforth, J.W, Cornforth, R.H. and Ryhage, R. Studies on the biosynthesis of cholesterol: XV. Mechanism of squalene biosynthesis from famesyl pyrophosphate and from mevalonate. J. BioI. Chem. 236: 1934-1939 (1961)
  22. Porter, J.W. Biosynthesis of isoprenoid compounds, Vol. 1, pp. 413-441. In: Prenyl Transferases and Isomerase, Poulter, C.D. and Rilling, H.C. (eds.). Wiley Publisher, New York, USA (1981)
  23. Agnew, W.S. Squalene synthetase. Methods Enzymol. 110: 359-375 (1985) https://doi.org/10.1016/S0076-6879(85)10094-7
  24. Kuswik, R.G. and Rilling, H.C. Squalene synthetase. Solubilizationand partial purification of squalene synthetase, copurification of presqualene pyrophosphate and squalene synthetase activities. J.Biol.Chem. 262: 1505-1510 (1987)
  25. Cohen, L.H., Griffioen, A.M. and Wanders, R.J.A. Regulation of squalene synthase in rat liver. Biochem. Biophys. Res. Commun. 138: 335-341 (1986) https://doi.org/10.1016/0006-291X(86)90285-8
  26. Dugan, R.E. and Porter, J.W. Hog liver squalene synthase: The partial purification of the particulate enzyme and kinetic analysis of the reaction. Arch. Biochem. Biophys. 152: 28-35 (1972) https://doi.org/10.1016/0003-9861(72)90189-0
  27. Shechter, I., Klinger, I. and Rucher, M.L. Solubilization and characterization of a truncated form of rat hepatic squalene synthase. J. BioI. Chem. 267: 8628-8635 (1992)
  28. Toda, S., Miyase, T., Arichi, H., Tanizawa, H. and Takino, Y. Natural antioxidants. III. Antioxidative components isolated from rhizome of Curcuma longa L. Chem. Pharm. Bull. 33: 1725-1728 (1985) https://doi.org/10.1248/cpb.33.1725
  29. Kuttan, R, Bhanumathy, P., Nirmala, K. and George, M.C. Potential anticancer activity of tumeric (Curcuma Zanga). Cancer Lett. 29: 197-202 (1996) https://doi.org/10.1016/0304-3835(85)90159-4