Potential Detection and Quality Properties of ${\gamma}-Irradiated$ Corn Starch of Korean and Chinese Origins by Viscosity Measurement during Storage

저장 기간 중 감마선 조사 옥수수 전분의 검지를 위한 점도 측정법의 적용과 품질특성

  • Published : 2003.04.01

Abstract

Physicochemical changes in corn starch caused by irradiation were investigated, and irradiated samples were identified. Viscosity, TBA value, Hunter color, and total viable count were measured after irradiation of corn starch. Corn starches from Korea and China were irradiated at 0, 2.5, 5, 7.5, 10, and 15 kGy using a $Co^{60}$ irradiator and stored for 9 months at $0^{\circ}C$ and $20^{\circ}C$. Viscosity and specific parameter values decreased in all samples with increasing irradiation dosage at 50 rpm, showing a dose-dependent relationship $(above\;R^2=0.80)$ between non-irradiated and irradiated samples during storage. These results suggest that detection of irradiated corn starches is possible using viscometric method during storage. Total viable count, TBA value, and Hunter color were determined as supplemental indices for measuring viscosities of samples. Total viable count and TBA values showed dose-dependent relationship $(2.5{\sim}15 kGy)$. Differences in viscosity and total viable count, and TBA values among non-irradiated samples showed little changes with the lapse of post-irradiation time, but were still distinguishable for more than 6 months at $0^{\circ}C$ and $20^{\circ}C$ for corn starches from korea and China.

감마선 조사한 국산 및 중국산 옥수수 전분의 저장 중 감마선 조사여부 확인 가능성과 품질 변화를 확인하였다. 점도 측정법을 이용한 검지가능성 시험에서 시료의 점도는 조사 선량에 따라 조금씩 감소하였고, $0^{\circ}C$$20^{\circ}C$에서 9개월간 저장 중에도 비조사구와 조사구 간의 구분이 가능하였다. Specific parameter를 설정한 결과, 조사처리에 따라 그 값이 감소하여 조사 여부의 확인이 가능하였으며, 조사선량과 specific parameter 간의 상관성은 저장 중 $R^2$값이 0.89이상으로 높게 나타나 조사여부의 검지에 활용할 수 있을 것으로 생각되었다. TBA가는 감마선 조사선량에 비례하여 저장 기간에 따라 유의적으로 증가하였으며, Hunter a값은 조사선량과 유의적인 상관을 나타내었다. 이상과 같이 specific parameter를 이용한 점도측정법은 감마선 조사 후 저장 중에도 조사여부의 screening에 적용이 가능할 것으로 판단되었으며, TBA가의 측정은 판정의 정확도를 높여주는 보조수단으로 기대된다.

Keywords

References

  1. Thayer, D.W. Wholesomeness of irradiated foods. Food Technol. 48: 58-57 (1994)
  2. Byun, M.W. Application and aspect of irradiation technology in food industry. Food Sci. Ind. 30: 89-100 (1997)
  3. Kwon, J.H., Byun, M.W. and Cho, H.O. Development of food irradiation technology and consumer attitude toward irradiated food in Korea. Radioisotopes 41: 654 (1992) https://doi.org/10.3769/radioisotopes.41.12_654
  4. Kwon, J.H., Chung, H.W. and Byun, M.W. ESR spectroscopy for detecting gamma-irradiated vegetables and estimating absorbed doses. Rad. Phys. Chem. 57: 319-324 (2000) https://doi.org/10.1016/S0969-806X(99)00398-9
  5. Kim, H.K., Kang, D,S., Choi, M.G. and Kwon, J.H. Detection of irradiated cereals from korea and china by viscometric method. Korean J. Food Sci. Technol. 33: 645-650 (2001)
  6. Yang, J.S. Methods for identification of irradiated foods. J. Food Hyg. Saf. 12: 160-174 (1997)
  7. Yi, S.D., Chang, K.S. and Yang, J.S. Trial to indentify irradiated corn powder by viscometric and pulsed photostimulated Luminescene(PPSL) methods. J. Food Hyg. Saf. 16: 82-87 (2001)
  8. Kwon, J.H., Chung, H.W., Byun, M.W. and Kang, I.J. Thermoluminescence detection of Korean traditional foods exposed to gamma and electron-beam irradiation. Rad. Phys. Chem. 52: 151-156 (1998) https://doi.org/10.1016/S0969-806X(98)00065-6
  9. Kwon, J.H., Chung, H.W. and Byun, M.W. ESR spectroscopy for detecting gamma-irradiated vegetables and estimating absorbed doses. Rad. Phys. Chem. 57: 319-324 (2000) https://doi.org/10.1016/S0969-806X(99)00398-9
  10. Kim, S.M., Park, E., Yang, J.S. and Kang, M.H. Changes of DNA fragmentation by irradiation doses and storage in gammairradiated fruits. J. Korean Soc. Food Sci. Nutr. 31: 594-598 (2002) https://doi.org/10.3746/jkfn.2002.31.4.594
  11. The Korean Society of Food Science and Nutrition. Handbook of Experiments in Food Science and Nutrition, pp. 709-712. The Korean Society of Foods Science and Nutrition, Busan (2000)
  12. Farkas, J., Sharif, M.M. and Koncz, A. Detection of some irradiated spices on the basis of radiation induced damage of starch. Radiat. Phys. Chem. 36: 621-627 (1990)
  13. Hayashi, T., Todoriki, S. and Kohyama, K. Irradiation effects on pepper starch viscosity. J. Food Sci. 59: 118-120 (1994) https://doi.org/10.1111/j.1365-2621.1994.tb06912.x
  14. Yi, S.D., Yang, J.S., Song, K.B., Chang, K.S. and Oh, M.J. Reological examination of white pepper slurries to determine prior treatment of pepper with gamma-irradiation. J. Food Sci. 66: 257-260 (2001) https://doi.org/10.1111/j.1365-2621.2001.tb11327.x
  15. Yi, S.D., Oh, M.J. and Yang, J.S. Detection for irradiated cereals by Maximun viscosity in amylogragh. Food Sci. Biotechnol. 9: 73-76 (2000)
  16. Yi, S.D., Chang, K.S. and Yang, J.S. Identification of irradiated potato, sweet potato and corn starches with viscometric method. Food Sci. Biotechnol. 9: 57-62 (2000)
  17. Yi, S.D., Oh, M.J. and Yang, J.S. Utilization of brabender viscoamylogragh to detect irradiated starches. J. Food Sci. Nutr. 5: 20-24 (2000)
  18. Kim, H.K., Kang, D,S., Choi, M.G., and Kwon, J.H. Detection of irradiated starches from korea and china by viscometric method. J. Korean Soc. Food Sci. Nutr. 30: 1082-1087 (2001)
  19. Hayashi, T., Todoriki, S., Okadome, H. and Kohyama, K. Conditions of viscosity measurement for detecting irradiated peppers. Rad. Phys. Chem. 45: 665-669 (1995) https://doi.org/10.1016/0969-806X(94)00078-X
  20. Chung, H.W., Jeong, J. and Kwon, J.H. Potential detection of irradiated dried agricultural products by viscosity measurement. J. Korean Soc. Food Sci. Nutr. 28: 1082-1086 (1999)
  21. Tuner, E.W., Payner, W.D., Montie, E.J., Bessert, M.W., Struck, G.M. and Olson, F.C. Use of the 2-thiobarbituric acid reagent to measure rancidity in frozen pork. J. Agric. Food Chem. 8: 326-329 (1954)
  22. APHA. Compendium of Methodes for the Microbiological Examination of Foods. Speck, M. (ed.). American Public Health Association, Washington D.C., USA (1976)
  23. SAS Institute, Inc. SAS User's Guide. SAS institute, Cary, NC, USA (1994)
  24. Sokhey, A.S. and Hanna, M. A. Properties of irradiated starches. Food Structure 12: 397-410 (1993)
  25. Malcolm, C.B. Food Texture and Viscosity, pp. 204-207. Academic Press, Inc., New York, USA (1982)
  26. Fennema, O.R. Food Chemistry, 3rd ed. pp. 110-120. Marcel Dekker, Inc. New York, USA (1988)
  27. Hayash, T., Todoriki, S. and Koyama, M. Application of viscosity measuring method to the detection of irradiated spices. Nippon shokuhin Kogyo Gakkaishi 40: 456-460 (1993) https://doi.org/10.3136/nskkk1962.40.456
  28. Diehl, J.F., Adam, S., Delincee, H. and Jakubick, C. Radiolysis of carbohydates and carbohydrate containing food stuffs. J. Agric. Food Chem. 26: 15-17 (1978) https://doi.org/10.1021/jf60215a063
  29. Son, I.S. and Kim, M. Storage stability of barleys irradiated by gamma-ray. J. Korean Soc. Food Sci. Nutr. 28: 1076-1081 (1999)
  30. Lee, H.J., Kim, J.O., Yook, H.S. and Byun, M.W. Physicochemical properties of gamma-irradiated soybeans. Korean J. Food Sci. Technol. 28: 558-565 (1996)
  31. Fennema, O.R. Food Chemistry, 3rd ed., p. 276. Marcel Dekker, Inc., New York, USA (1988)
  32. Howard, L.R., Miller, G.H., JR. and Wagner, A.B. Microbiological, and chemical, and sensory changes in irradiated Pico De Gallo. J. Food Sci. 60: 461-464 (1995) https://doi.org/10.1111/j.1365-2621.1995.tb09803.x
  33. Byun, M.W. Radurization and radicidation of spices. Korean J. Food Sci. Technol. 17: 311-318 (1985)