Ultrafiltration for Quality Improvement of Wine

한외여과공정을 이용한 포도주의 품질개선

  • Chung, Jae-Ho (Division of Biotechnology, Kyungwon University) ;
  • Mok, Chul-Kyoon (Division of Biotechnology, Kyungwon University) ;
  • Lim, Sang-Bin (Department of Food Science and Engineering, Cheju National University) ;
  • Park, Young-Seo (Division of Biotechnology, Kyungwon University)
  • Published : 2003.06.01

Abstract

Physicochemical and microbiological changes of grape wine fermented and aged at 25 and $15^{\circ}C$ for 2 and 14 weeks, respectively, were investigated. Viable bacterial cell number, $3.3{\times}10^2\;CFU/mL$ at the beginning of fermentation, increased to $2.3{\times}10^6\;CFU/mL$ after 2 weeks, then decreased to $1.9{\times}10^3\;CFU/mL$ after 14 weeks. Viable yeast cell number increased from $2.8{\times}10^2\;to\;2.2{\times}10^7\;CFU/mL$ during fermentation, then decreased to $1.6{\times}10^4\;CFU/mL$ after aging. Turbidity, pH, total sugar content, reducing sugar content, and solid content of grape wine decreased during fermentation, whereas acidity and alcohol content increased to 0.64 and 8.4%, respectively. Most physicochemical properties did not change significantly during aging. When grape wine was filtered through $0.45-{\mu}m$ nitrocellulose membrane, followed by various ultrafiltration membranes with different molecular weight cut-off values, Biomax 100K membrane with $100\;L/m^2/hr$ (LMH) of initial flux was chosen for ultrafiltration process. These membrane filtration treatments resulted in complete removal of microorganisms and decreases in turbidity, reducing sugar, and solid content. Physicochemical properties of wine did not change, and no microorganisms were found during storage at $30^{\circ}C$ for 12 weeks.

포도 착즙액의 당도를 $24^{\circ}Brix$로 조절하여 $25^{\circ}C$에서 2주간 발효하여 제조한 후 $15^{\circ}C$에서 14주간 숙성과정을 거친 포도주의 이화학적 성분 및 미생물의 변화를 살펴보았으며 한외여과 후의 포도주의 이화학적 특성의 변화를 관찰하였다. 총 세균수는 발효 초기 $3.3{\times}10^2\;CFU/mL$에서 2주간의 발효 후에는 $2.3{\times}10^6\;CFU/mL$로 증가한 후 숙성과정을 거친 후에는 $1.9{\times}10^3\;CFU/mL$로 다시 감소하였다. 효모의 경우에는 발효 초기 $2.8{\times}10^2\;CFU/mL$에서 발효 후에는 $2.2{\times}10^7\;CFU/mL$로 증가한 후, 숙성과정을 거친 후에는 $1.6{\times}10^4\;CFU/mL$로 역시 감소하는 경향을 보였다. 탁도, pH, 총당, 환원당, 고형물 함량은 발효가 진행됨에 따라 감소하였고, 산도, 알코올 함량은 증가하는 경향을 나타내어 발효가 완료된 후의 산도는 0.64%, 알코올 함량은 8.4%의 값을 보였다. 숙성과정 중에는 대부분의 이화학적 성질은 크게 변화하지 않았다. 포도주를 $0.45{\mu}m$ nitrocellulose 미세여과막을 이용하여 여과한 후 재질과 공경이 서로 다른 한외여과막을 사용하여 한외여과한 결과 Biomax 100K 막이 초기 flux가 $100\;liter/m^2/h$ (LMH)로 가장 높아 한외여과공정의 최적 한외여과막으로 선정하였다. 한외여과에 의해 포도주 내에 존재하는 미생물은 완벽하게 제거되었으며 환원당 함량과 고형물 함량은 약간 감소하였으나 그 이외의 이화학적 특성은 크게 변화하지 않았다. 포도주를 $30^{\circ}C$에서 12주간 저장하였을 경우 저장기간동안 미생물이 전혀 검출되지 않았으며 이화학적 특성도 변화하지 않았다.

Keywords

References

  1. Anonymous. The trend of production and sales in alcoholic beverage industries, pp. 468-484. In: Korean Annual Report of Food Industries. The agriculture, fisheries and livestock news, Seoul, Korea (1997)
  2. Amerine, M.A. and Cruess, W.V. Red table wine production, pp. 303-329. In: The Technology of Wine Making. AVI Publishing, Connecticut, USA (1960)
  3. Park, K.I., Nah, S.S., Yoo, Y.J. and Hong, S.C. Studies on the red wine production. Tech. Bull. Natl. Ins. Technol. 19: 107-112 (1969)
  4. Gong, S.J., Hong, S.B.and Lee, D.K. Investigations on grape varieties for winering. Tech. Bull. of Natl. Hort. Res. Ins. 15: 19-23 (1973)
  5. Park, Y.H. Studies on the grape variety and the selection of yeast strain for wine-making in Korea. Korean J. Agric. Chem. Soc. 18: 219-227 (1975)
  6. Byun, S.S. A comparative study on the manufacturing processes of red wine. Korean J. Nutr. 13: 139-144 (1980)
  7. Yoo, J.Y., Seog, H.M., Shin, D.H. and Min, B.Y.Enological characteristics of Korean grape and quality evolution of their wine. Korean J. Appl. Microbiol. Bioeng. 12: 185-190 (1984)
  8. Yi, S.H., Ann, Y.G., Choi, J.S. and Lee, J.S. Development of peach fermented wine. Korean J. Food and Nutr. 9: 409-412 (1996)
  9. MHW. Official Book of Foods, Experimental Methods. Ministry of Health and Welfare, Seoul, Korea (1997)
  10. Chen, C.S., Carter, R.D., Barros, S.M., Nagy, S., Hernandez, B. Evaluation of citrus processing system for passion fruit juice concentration. Proc. Fla. State Hort. Soc. 104: 51-54 (1991)
  11. Yonsei University. Experiments in Food Science and Engineering. Tamgudang Publishing, Seoul, Korea (1975)
  12. Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428 (1959) https://doi.org/10.1021/ac60147a030
  13. Lim, S.B., Jwa, M.K. Mok, C.K. and Park, Y.S. Quality change in Kochujang treated with high hydrostatic pressure. Korean J. Food Sci. Technol. 33: 444-450 (2001)
  14. Kim, J.S., Kim, S.H. and Han, J.S. Effect of sugar and yeast addition on red wine fermentation using Campbell Early. Korean J. Food Sci. Technol. 31: 516-521 (1999)
  15. Yoo, J.Y., Seog, H.M., Shin, D.H. and Min, B.Y. Ecological characteristics of Korean grape and quality evaluation of their wine. Korean J. Appl. Microbiol. Bioeng. 12: 185-190 (1984)
  16. Kim, D.H., Rhim, J.W. and Jung, S.T. Clarification and aging of fermented honey. Korean J. Food Sci. Technol. 31: 1330-1336 (1999)
  17. Pickering, G.J., Heatherbell, D.A. and Barnes, M.F. The production of reduced-alcohol wine using glucose oxidase treated juice. Part 1. Composition. Am. J. Enol. Vitic. 50: 291-298 (1999)
  18. Arnar, B.R., Gupta, B.B. and Jaffrin, M.Y. Apple juice clarification using mineral membranes: Fouling control by backwashing and pulsating flow. J. Food Sci. 55: 1620-1625 (1990) https://doi.org/10.1111/j.1365-2621.1990.tb03585.x
  19. Kang, M.Y., Park, Y.S., Mok, C.K and Chang, H.G. Improvement of shelf-life of Yakju by membrane filtration. Korean J. Food Sci. Technol. 30: 1134-1139 (1998)