Kinetics and mechanism of chromate reduction by biotite and pyrite

흑운모 및 황철석에 의한 6가 크롬의 환원 반응속도와 반응기작

  • 전철민 (연세대학교 지구시스템과학과) ;
  • 김재곤 (한국지질자원연구원) ;
  • 문희수 (연세대학교 지구시스템과학과)
  • Published : 2003.02.01

Abstract

The removal of chromate from aqueous solution using finely ground pyrite and biotite was investigated by batch experiments and the kinetics and the mechanism of chromate reduction were discussed. The chromate reduction by pyrite was about hundred times faster than that by biotite and was also faster at pH 3 than at pH 4. When pyrite was used, more than 90% of initial chromate was reduced within four hours at pH 4 and within 40 min. at pH 3. However, more than 400 hours was taken for the reduction of 90% of initial chromate by biotite. The results indicate that the rate of chromate reduction was strongly depending on the amount of Fe(II) in the minerals and on the dissolution rate of Fe(II) from the minerals. The reduction of chromate at pH 4 resulted in the precipitation of (Cr, Fe)(OH))$_3$$_{ (s)}$, which is believed to have limited the concentrations of dissolved Cr(III) and Fe(III) to less than expected values. When biotite was used, amounts of decreased Fe(II) and reduced Cr(Ⅵ) did not show stoichiometric relationship, which implying there was not only chromate reduction by ferrous ions in the acidic solution but also heterogeneous reduction of ferric ions by the structural ferrous iron in biotite. However, the results from a series of the experiments using Pyrite showed that concentrations of the decreased Fe(II) and the reduced Cr(Ⅵ) were close to the stoichiometric ratio of 3:1. It was because the oxidation of pyrite rapidly created ferrous ions even in oxygenated solutions and the chromate reduction by the ferrous ions was significantly faster than ferrous ion oxygenation.

본 연구에서는 황철석과 흑운모를 이용한 회분식반응조실험(batch reactor experiment)을 통하여 수용성 Cr(Ⅵ)의 제거 및 반응속도를 살펴보았으며 이에 따른 산화환원 반응기작을 고찰하였다. 황철석 실험군이 흑운모실험 군에 비해 산화환원반응속도가 100배정도 빨랐으며, pH 3의 실험군이 pH 4 실험군에 비해 Cr(III)으로의 환원반응속도가 빠르게 나타났다. 황철석 실험군에서 Cr(Ⅵ) 초기농도치 90%이상이 제거되는데 걸리는 시간은 pH가 4일때 4시간, pH가 3일 때 40분 이내였다. 반면에, 흑운모 실험군의 경우 pH가 3인 조건에서도 Cr(Ⅵ) 초기농도의 90%이상이 제거되는데 400시간 이상이 걸렸다. 모든 조건에서 Cr(III)치 농도는 초기에 증가하는 경향을 보이다가 일정시간이 지나면 안정한 농도로 고정되었다. 산성의 반응용액에서 Cr(Ⅵ)의 환원반응속도는 이 두 광물이 포함하고 있는 2가 철의 해리속도와 관련이 있음을 의미한다. pH 4의 조건인 실험군에서는 용액 내 Cr(Ⅵ)이 Cr(III)으로 환원되고 Fe(II)가 Fe(III)로 산화된 후, (Cr, Fe)(OH)$_3$$_{ (s)}$와 같은 침전물을 생성하여 상대적으로 용액내 Cr(III)과 Fe(III)농도가 낮은 것으로 여겨진다. pH 3의 실험군을 화학양론적 고찰하였으며, 흑운모의 실험에서는 수용성 Fe(II)의 감소된 양과 Cr(Ⅵ)의 환원된 양의 이론적인 몰비가 [3Fe(II) : 1Cr(Ⅵ)]임에도 그 몰 비가 약 1:1로서 1 mole의 Cr(Ⅵ)을 환원시키는데 Fe(II)이 적게 소비되었으며, 이는 광물에서 해리되는 Fe(II)에 의한 Cr(Ⅵ)의 환원뿐만 아니라 흑운모 구조 내 Fe(II)이 용액 내 Fe(III) 이온을 Fe(II) 이온으로 환원시키는 불균질산화환원반응이 발생하고 이 반응으로 생성된 Fe(II) 이온이 다시 Cr(Ⅵ)의 환원반응에 기여하였기 때문이다. 그러나 황철석 실험의 경우, 그 몰비가 약 2.90:1 로서 3에 가까우며, 이는 황철석의 빠른 산화를 통하여 급속한 Fe(II) 이온이 공급됨으로서 Cr(Ⅵ)의 환원반응이 이론적 화학양론의 반응 몰비에 부합한 결과를 보인 것으로 판단된다.

Keywords

References

  1. Standard methods for the examination of water and wastewater(20th ed.) Amerian Public Health Association;American Water Works Association;Water Pollution Control Federation
  2. The hydrolysis of cations Baes, C.F.;Mesmer, R.E.
  3. J. Environ. Qual. v.8 Behavior of chromium in soils: Ⅲ. Oxidation Bartlett, R.;James, B.R. https://doi.org/10.2134/jeq1979.00472425000800010008x
  4. Environ. Sci. Technol. v.31 In-situ remediation of Cr(Ⅵ)-contaminated groundwater using permeable reactive walls: Laboractory studies Blowes, D.W.;Ptacek, C.J.;Jambor, J.L. https://doi.org/10.1021/es960844b
  5. Clays and Clay minerals v.48 Reduction and sorption of chromium by Fe(Ⅱ)-bearing phyllosilicates: chemical treatments and X-ray absorption spectroscopy (XAS) studies Brigatti, M.F.;Lugli, C.;Cibin, G.;Marcelli, A.;Giuli, G.;Paris, E.;Mottana, A.;Wu, Z. https://doi.org/10.1346/CCMN.2000.0480214
  6. Environ. Sci. Technol. v.31 kinetics and dependence of chromium(Ⅵ) reduction by iron(Ⅱ) Bruce, I.J.;Hug, S.J. https://doi.org/10.1021/es960672i
  7. J. Colloid Interface Sci. v.148 X-ray absorption spectroscopic study of the sorption of Cr(Ⅲ) at the oxide-water interface. Ⅱ. Absorption, coprecipitation, and surface precipitation on hydrous ferric oxide Charlet, L.;Manceau, A. https://doi.org/10.1016/0021-9797(92)90182-L
  8. Am. J. Sci. v.289 Kinetics of chromate reduction by ferrous ions derived from hematite and biotite at 25℃ Eary, L.E.;Rai, D. https://doi.org/10.2475/ajs.289.2.180
  9. Environ. Sci. Technol. v.22 Chromate removal from aqueous wastes by reduction with ferrous iron Eary, L.E.;Rai, D. https://doi.org/10.1021/es00173a018
  10. Environ. Sci. Technol. v.26 Chromium(Ⅲ) oxidation by δ-$MnO_2$:Ⅰ. Chracterization Fendorf, S.;Zasoski, R.J. https://doi.org/10.1021/es00025a006
  11. Geochim. Cosmochim. Acta v.58 Chromium sorption by phlogopite and biotite in acidic solutions at 25 : Insight from X-ray photoeletron spectroscopy and electron microscopy Ilton, E.S.;Veblen, D.R https://doi.org/10.1016/0016-7037(94)90113-9
  12. Clay Sci. v.10 Oxidation of Chromium(Ⅲ) to chromium(Ⅵ) by a series of synthesized birnessites (δ-$MnO_2$): Kinetics and oxidation capacity Kim, J.G.;Moon, H.S.
  13. Chromium in nature and human environments Nriagu, J.O.;Nieboer, E.(eds.)
  14. Environ. Sci. Technol. v.31 Reduction of hexavalent chromium by amorphous iron sulfide Patterson, R.R;Fendorf, S;Fendorf, M. https://doi.org/10.1021/es960836v
  15. Geochim. Cosmochim. Acta v.61 Differential redox and sorption of Cr(Ⅲ/Ⅵ) on natural silicate and oxide minerals: EXAFS and XANES results Peterson, M.L.;Brown, G.E., Jr.;Parks, G.A.;Stein, C.L. https://doi.org/10.1016/S0016-7037(97)00165-8
  16. Environ. Sci. Technol. v.33 In situ Cr(Ⅵ) reduction within coarse-textured, oxidecoated soil and aquifer system using Fe(Ⅱ) solutions Seaman, J.C.;Bertch, P.M.;Scwallie, L. https://doi.org/10.1021/es980546+
  17. Electric Power Research Inst., Final Rept. EA-3236 Physical-chemical characteristics of utility solid wastes: Palo, Alto, Calif. Summers, K.V.;Pupp, G.L.;Gherini, S.A.
  18. European J. Soil Sci. v.47 Reduction of Cr(Ⅵ) by soil humic acids Wittbrodt, P.R.;Palmer, C.D. https://doi.org/10.1111/j.1365-2389.1996.tb01386.x
  19. Wat. Res. v.29 Removal of hexavalent chromium anions from solutions by pyrite fines Zouboulis, A.I.;Kydros, K.A.;Matis, K.A. https://doi.org/10.1016/0043-1354(94)00319-3