Benzene Biodegradation Using the Polyurethane Biofilter Immobilized with Stenotrophomonas maltophilia T3-c

  • Kwon, Heock-Hoi (Department of Chemical and Environment Engineering, Soongsil University) ;
  • Lee, Eun-Young (Research Institute of Biological and Environment Technology, Biosanit Co.) ;
  • Cho, Kyung-Suk (Department of Environment Science and Engineering, Ewha Womans University) ;
  • Ryu, Hee-Wook (Department of Chemical and Environment Engineering, Soongsil University, Research Institute of Biological and Environment Technology, Biosanit Co.)
  • Published : 2003.02.01

Abstract

The benzene removal characteritics of the polyurethane (PU) biofilter immobilized with S. maltophilia T3-c, that could efficiently degrade benzene, was investigated. Maximum capacity to eliminate benzene was maintained at $100-110g{\cdot}m^-3{\cdot}h^-1$ when space velocity (SV) ranged from 100 to $300 h^-1$ -1/, however, it decreased sharply to $55 g{\cdot}m^-3{\cdot}h^-1^$ as SV increased to $400 h^-1$. The critical elimination capacities that guaranteed $90\%$ removal of inlet loading of the PU biofilter were determined to be 70,30, and $15 g{\cdot}m^-3{\cdot}h^-1$ at SV 100,200, and $300 h^-1$, respectively. Based on the result of a kinetic analysis of the PU biofilter, maximum benzene elimination velocity ($V_m$) was $125 g{\cdot}m^-3^\;of\;PU{\cdot}h^-1$ and saturation constant ($K_m$) was $0.22 g{\cdot}m^-3^$ of benzene ($65{\mu}{\cdot}I^-1$). This study suggests that the biofilter utilizing S. maltophilia T3-c and polyurethane is a very promising technology for effectively degrading benzene.

Keywords

References

  1. J. Microbiol. Biotechnol. v.8 Hydrolytic dechlorination of 4-chlorobenzoate specified by fcbABC of Pseudomonas sp. DJ-12 Chae J. C.;K. J. Ahn;C. K. Kim
  2. Biotechnol. Bioeng. v.48 Thermophilic biodegradation of BTEX by two Thermus sp. Chen C. I.;R. T. Taylor https://doi.org/10.1002/bit.260480609
  3. J. Biosci. Bioeng. v.90 Biological deodorization of hydrogen sulfide using porous lava as a carrier of Thiobacillus thiooxidans Cho K. S.;H. W. Ryu;N. Y. Lee
  4. J. Ferment. Bioeng. v.71 Degradation characteristics of hydrogen sulfide, methanethiol, dimethyl sulfide and dimethyl disulfide by Thiobacillus thioparus DW44 isolated peat biofilter Cho K. S.;M. Hirai;M. Shoda https://doi.org/10.1016/0922-338X(91)90248-F
  5. J. Microbiol. Biotechnol. v.5 Biodegradation of toluene using biofilms in a bubble column bioreactor Choi Y. B.;J. Y. Lee;H. S. Kim
  6. Biores. Technol. v.77 Biofiltration-the treatment of fluids by microorganisms immobilized into the filter bedding material: A review Cohen Y. https://doi.org/10.1016/S0960-8524(00)00074-2
  7. Appl. Microbiol. Biotechnol. v.52 Benzene/toluene/p-xylene degradation, Part II. Effect of substrate interactions and feeding strategies in toluene/benzene and toluene/p-xylene fermentations in a partitioning biorector Collins L. D.;A. J. Daugulis https://doi.org/10.1007/s002530051532
  8. Proceedings of the 1996 Conference on Biofiltration (an Air Pollution Control Technology) Characterization of the microbial population during biofilteration and the unfluence of the inoculum source de Castro A.;D. G. G. Allen;R. R. Fulthorpe;F. E. Reynolds(ed.)
  9. Environ. Sci. Technol. v.34 Development and validation of a simple protocol to rapidly determine the performance of biofilters for VOC treatment Deshusses M. A.;C. T. Johnson https://doi.org/10.1021/es9909172
  10. Biofiltration for Air Pollution Control Devinny J. S.;M. A. Deshusses;T. S. Webster
  11. In Proceedings of Biologische Abgasreinigung, VDI Berichte 735 Vergleich von biofiltermedien anhand mikrobiologischer und bodenphysikalisher Kenndaten Eitner D.
  12. Can. J. Microbiol. v.43 Biodegradation of groundwater pollutants by a combined culture of Mycobacteriun vaccae and a Rhodococcus sp. Fairlee J. R.;B. L. Burback;J. J. Perry https://doi.org/10.1139/m97-122
  13. Biodegradation v.10 Diversity and correlation of specific aromatic hydrocarbon biodegradation capabilities Gulensoy N.;P. J. J. Alvarez https://doi.org/10.1023/A:1008318405882
  14. J. Air Waste Manage. Assoc. v.47 Kinetic behavior of the toluene biofiltration process Hwang S. J.;H. M. Tang https://doi.org/10.1080/10473289.1997.10463926
  15. J. Chem. Technol. Biotechnol. v.73 Purification of air polluted with high concentrations of toluene and xylene in a pilot-scale biofilter Jorio H.;K. Kiared;R. Brzezinski;A. Leroux;G. Viel;M. Heitz https://doi.org/10.1002/(SICI)1097-4660(1998110)73:3<183::AID-JCTB943>3.0.CO;2-7
  16. J. Microbiol. Biotechnol. v.9 Removal of hydrogen sulfide and methylmercaptan using Thiobacillus in a three phase fluidized bed bioreactor Kim K. R.;K. J. Oh;K. Y. Park;D. Kim
  17. J. Microbiol. Biotechnol. v.10 Simultaneous removal of hydrogen sulfide and ammonia using Thiobacillus sp. IW in a three-phase fluidized-bed bioreactor Kim S. H.;K. J. Oh;J. H. Moon;D. Kim
  18. J. Bacteriol. v.173 Genetic organization and regulation of a meta cleavage pathway for catechols produced from catabolism of toluene, benzene, phenol and cresols by Pseudomonas picketti PKO1 Kukor J. J.;R. H. Olsen
  19. J. Air Wast. Manage. Assoc. v.52 Degradation characteristics of toluene, benzene, ethylbenzene and xylene by Stenotrophomonas maltophilia T3-c Lee E. Y.;Y. S. Jun;K. S. Cho;H. W. Ryu https://doi.org/10.1080/10473289.2002.10470796
  20. J. Microbiol. Biotechnol. v.8 Involvement of electrostatic interactions between in the components of toluene dioxygenase from Pseudomonas putida F1 Lee K.
  21. J. Microbiol. Biotechnol. v.4 Cometabolism in the biodegradation of benzene, toluene and p-xylene mixture by isolated Pseudomonas fluorescence BE103 Lim H. K.;K. Y. Lee;H. S. Kim
  22. J. Air Wast. Manage. Assoc. v.50 Removal of BTEX vapor from waste gases by a trickle bed biofilter Lu C.;M. R. Lin;W. C. Lin https://doi.org/10.1080/10473289.2000.10464021
  23. J. Indus. Microbiol. v.16 Degradation of BTEX compounds in liquid media and in peat biofilter Mallakin A.;O. P. Ward https://doi.org/10.1007/BF01570040
  24. J. Microbiol. Biotechnol. v.11 Biodegradation of hydrocarbons by an organic solvent-telerant fungus, Cladosporium resinae NK-1 Oh K. B.;W. Mar;I. M. Chang
  25. Biotech. Bioeng. v.44 Interactions between benzene, toluene and p-xylene(BTX) during their biodegradation Oh Y. S.;Z. Shareefdeen;B. C. Baltzis;R. Bartha https://doi.org/10.1002/bit.260440417
  26. Biotechnology: a comprehensive Treatise, VCH, Verlagsgesellschaft v.8 Exhaust gas purification Ottengraf S. P. P.;H. J. Rehm (ed.);G. Reed (ed.)
  27. J. Microbiol. Biotechnol. v.8 Biodegradation of phenol by a trichloroethylene-cometabolizing bacterium Park G. T.;H. J. Son;J. G. Kim;S. J. Lee
  28. Biotechnol. Lett. v.20 Evaluation of biodegradation potential of foam embedded Burkholderia cepacia G4 Radway J. C.;D. J. W. Santo;T. C. Hazen;E. W. Wilde https://doi.org/10.1023/A:1005366406453
  29. Biotech. Bioeng v.69 Biodegradation kinetics of benzene, toluene and phenol as single and mixed substrate for Pseudomonas putida F1 Reardon K. F.;D. C. Mosteller;J. D. B. Rogers https://doi.org/10.1002/1097-0290(20000820)69:4<385::AID-BIT5>3.0.CO;2-Q
  30. Chem. Eng. Sci. v.49 Biofiltration of toluene vapor under steady-state and transient conditions: Theory and experimental results Shareefdeen Z.;B. C. Baltzis https://doi.org/10.1016/S0009-2509(05)80026-0
  31. J. Biotech v.67 Biodegradation of benzene, toluene, ethylbenzene and o-xylene by a coculture of Pseudomonas putida and Pseudomonas fluorescens immobilized in a fibrous-bed bioreactor Shim H.;S. T. Yang https://doi.org/10.1016/S0168-1656(98)00166-7
  32. J. Microbiol. Biotechnol. v.8 Biodegradation of trichloroethylene by phenol-degrading Pseudomonas putida Shin H. J.;M. Y. Lee;J. W. Yang
  33. Appl. Microbiol. Biotechnol. v.45 The effect of inoculation and the type of carrier material used on the biofilter of methyl sulfides Smet E.;C. Chasaya;H. Van Langenhove;W. Verstraete https://doi.org/10.1007/s002530050686
  34. In Proceedings of the 90th Annual Meeting and Exhibition of the Air and Waste Management Association, Air and Waste Management Association Biofilter application for control of BTEX compounds from glycol dehydrator condenser vent gases at oil and natural gas producing facility Stewart W. C.;R. S. Kamarthi
  35. J. Environ. Sci. Heal v.A32 Biofiltration: A promising and cost-effective control technology for odors, VOCs and air toxics Wani A. H.;R. M. R. Branion;A. K. Lau
  36. J. Bacteriol v.173 Toluene 4-monooxygenase, a three-component enzyme system that catalyzes the oxidation of toluene to p-cresol in Pseudomonas mendocina KR1 Whited G. M.;D. T. Gibson
  37. J. Environ. Eng. v.123 Performance of a pilot-scale compost biofilter treating gasoline vapor Wright W. F.;E. D. Schroeder;D. P. Y. Chang;K. Romstad https://doi.org/10.1061/(ASCE)0733-9372(1997)123:6(547)
  38. Proc. Biotechnol. v.34 Removal of benzene in a hybrid bioreactor Yeom S. H.;Y. J. Yoo