Characterization of a Tacky Poly(3-Hydroxyalkanoate) Produced by Pseudomonas chlororaphis HS21 from Palm Kernel Oil

  • YUN, HYE SUN (Department of microbiology, Chungnam National University) ;
  • DO YOUNG KIM (Department of microbiology, Chungnam National University) ;
  • CHUNG WOOK CHUNG (Department of microbiology, Chungnam National University) ;
  • HYUNG WOO KIM (Department of microbiology, Chungnam National University Institute of Biotechnology, Chungnam National University) ;
  • YOUNG KI YANG (Department of microbiology, Chungnam National University) ;
  • YOUNG HA RHEE (Department of microbiology, Chungnam National University)
  • Published : 2003.02.01

Abstract

Pseudomonas chlororaphis HS21 was isolated from a soil sample and found to produce medium-chain-length polyhydroxyalkanoates (MCL-PHAs) using palm kernel oil (PKO) as the sole carbon source. Up to 3.3 g/1 dry cell weight containing $45\%$ MCL-PHA was produced, when the strain was grown for 21 h in a jar fermentor culture containing 5 g/1 PKO. The polymer produced from PKO consisted of unsaturated monomers of $7.3\%$ 3-hydroxy-5-cis-tetradecenoate and $2.3\%$ 3-hydroxy-5,8,-cis, cis-tetradecadienoate as well as saturated even-carbon number monomers ranging from $C_6\;to\;C_14$, as determined by GC and El GC/MS The PHA was a transparent, sticky material at room temperature. A differential scanning calorimetric analysis revealed that the polymer was amorphous with a $-44^{\circ}C$ glass transition temperature. The number average molecular weight and polydispersity index of the PHA were 83,000 and 1.53, respectively. Although the PHA was practically biodegradable, its degradability was lower than that of poly(3-hydroxyoctanoate) based on a comp:trison of the clear zones formed by growing PHA depolymerase-producing bacteria on an agar plate containing the respective polymers.

Keywords

References

  1. Appl. Microbiol. Biotechnol. v.49 Poly(hydroxyalkanoate) biosynthesis from triglyceride substrates Ashby R. D.;T. A. Foglia https://doi.org/10.1007/s002530051194
  2. Biotechnol. Lett. v.20 Improved film properties of radiation-treated medium-chain-length poly(hydroxyalkanoates) Ashby R. D.;T. A. Foglia;C. K. Liu;J. W. Hampson https://doi.org/10.1023/A:1005411106279
  3. Biomacromolecules v.2 Glucose/lipid mixed substrates as a means of controlling the properties of medium chain length poly(hydroxyalkanoates) Ashby R. D.;D. K. Y. Solaiman;T. A. Foglia;C. K. Liu https://doi.org/10.1021/bm000098+
  4. Handbook of Tropical Foods Palm oil Berger K. G.;Chan H. T. (ed.)
  5. J. Microbiol. Biotechnol. v.9 Isolation of a Pseudomonas sp. strain exhibiting unusual behavior of poly(3-hydroxyalkanoates) biosynthesis and characterization of synthesized polyesters Chung C. W.;Y. S. Kim;Y. B. Kim;K. S. Bae;Y. H. Rhee
  6. Appl. Microbiol. Biotechnol. v.46 The microbial production of poly(hydroxyalkanoates) from tallow Cromwick A. M.;T. A. Foglia;R. W. Lenz https://doi.org/10.1007/s002530050845
  7. Quantitative Chemical Analysis Fischer R. B.;D. G. Peters
  8. Appl. Environ. Microbiol. v.58 Pseudomonas putida KT2442 cultivated on glucose accumulates poly(3-hydroxyalkanoates) consisting of saturated and unsaturated monomers Huijberts G. N. M.;G. Eggink;P. de Waard;G. W. Huisman;B. Witholt
  9. Antonie van Leeuwenhoek v.80 Cometabolic production of copolyesters consisting of 3-hydroxyvalerate and medium-chain-length 3-hydroxyalkanoates by Pseudomonas sp. DSY-82 Kang H. O.;C. W. Chung;H. W. Kim;Y. B. Kim;Y. H. Rhee https://doi.org/10.1023/A:1012214029825
  10. Macromolecules v.31 Bacterial poly(3-hydroxyalkanoates) bearing carbon-carbon triple bonds Kim D. Y.;Y. B. Kim;Y. H. Rhee https://doi.org/10.1021/ma980208t
  11. Int. J. Biol. Macromol. v.28 Evaluation of various carbon substrates for the biosynthesis of polyhydroxyalkanoates bearing functional groups by Pseudomonas putida Kim D. Y.;Y. B. Kim;Y. H. Rhee https://doi.org/10.1016/S0141-8130(00)00150-1
  12. Int. J. Biol. Macromol v.29 Biosynthesis of polyhydroxyalkanoates copolyester containing cyclohexyl groups by Pseudomonas oleovorans Kim D. Y.;S. B. Jung;G. G. Choi;Y. B. Kim;Y. H. Rhee https://doi.org/10.1016/S0141-8130(01)00144-1
  13. Biomacromolecules v.3 Characterization of an extracellular medium-chain-length poly(3-hydroxyalkanoate) depolymerase from Psedomonas alcaligenes LB19 Kim D. Y.;J. S. Nam;Y. H. Rhee https://doi.org/10.1021/bm010113q
  14. J. Microbiol. Biotechnol. v.12 Cometabolic production of poly(3-hydroxyalkanoates) containing carbon-carbon double and carbon-carbon triple bonds by Pseudomonas oleovorans Kim D. Y.;Y. B. Kim;Y. H. Rhee
  15. J. Biosci. Bioeng. v.89 Purification and characterization of extracellular medium-chain-length polyhydroxyalkanoate depolymerase from Pseudomonas sp. RY-1 Kim H. M.;K. E. Ryu;K. S. Bae;Y. H. Rhee https://doi.org/10.1016/S1389-1723(00)88737-X
  16. Macromol. Rapid Commun. v.22 Photochemical crosslinking and enzymatic degradation of poly(3-hydroxyalkanoates) for micropatterning in photolithography Kim S. N.;S. C. Shim;D. Y. Kim;Y. H. Rhee;Y. B. Kim https://doi.org/10.1002/1521-3927(20010901)22:13<1066::AID-MARC1066>3.0.CO;2-M
  17. Macromolecules v.32 PHAs produced by Pseudomonas putida and Pseudomonas oleovorans grown with n-alkanoic acids containing aromatic groups Kim Y. B.;D. Y. Kim;Y. H. Rhee https://doi.org/10.1021/ma982033t
  18. Appl. Environ. Microbiol. v.54 Formation of polyesters by Pseudomonas oleovorans: Effect of substrates on formation and composition of poly-(R)-3-hydroxyalkanoates and poly-(R)-3-hydroxyalkanoates Lageveen R. G.;G. W. Huisman;H. Preusting;P. ketelaar;G. Eggink;B. Witholt
  19. Biotechnol. Bioeng. v.49 Bacterial polyhydroxyalkanoates Lee S. Y. https://doi.org/10.1002/(SICI)1097-0290(19960105)49:1<1::AID-BIT1>3.0.CO;2-P
  20. Science v.285 Tack - a sticky subject Russell T. P.;H. C. Kim https://doi.org/10.1126/science.285.5431.1219
  21. Curr. Microbiol. v.38 Medium-chain-length poly(${\beta}$-hydroxyalkanoate) synthesis from triacylglycerols by Pseudomonas saccharophila Solaiman D. K. Y.;R. D. Ashby;T. A. Foglia https://doi.org/10.1007/PL00006779
  22. J. Microbiol. Biotechnol. v.1 Isolation of Pseudomonas putida BM01 accumulating high amount of PHA$_{MCL}$ Song J. J.;S. C. Yoon
  23. J. Microbiol. Biotechnol. v.11 Cometabolism of ${\omega}$-phenylalkanoic acids with butyric acid for efficient production of aromatic polyesters in Pseudomonas putida BM01 Song J. J.;M. H. Choi;S. C. Yoon;N. E. Huh
  24. Appl. Microbiol. Biotechnol. v.47 Saponified palm kernel oil and its major free fatty acids as carbon substrates for the production of polyhydroxyalkanoates in Pseudomonas putida PGA1 Tan I. K. P.;K. Sudesh Kumar;M. Theanmalar;S. N. Gan;B. Gordon https://doi.org/10.1007/s002530050914
  25. FEMS Microbiol. Lett. v.128 Diversity of bacterial polyhydroxyalkanoic acids Steinbuchel A.;H. E. Valentin
  26. Appl. Environ. Microbiol. v.56 Formation of polyesters consisting of medium-chain-length 3-hydroxyalkanoic acids from gluconate by Pseudomonas aerugonosa and other fluorescent pseudomonads Timm A.;A. Steinbuchel
  27. Curr. Opin. Biotechnol. v.10 Perspectives of medium chain length poly(hydroxyalkanoates), a versatile set of bacterial bioplastics Witholt B.;B. Kessler https://doi.org/10.1016/S0958-1669(99)80049-4
  28. Antonie van Leeuwenhoek v.78 Hyperproduction of polyesters consisting of medium-chain-length hydroxyalkanoate monomers by strain Pseudomonas stutzeri 1317 Xi J.;Q. Wu;Y. Yan;Z. Zhang;P. H. F. Yu;M. K. Cheung;R. Zhang;G. Q. Chen https://doi.org/10.1023/A:1002714102347