Determination of Critical State Parameters in Sandy Soils from Standard Triaxial Testing (I) : Review and Application

표준삼축시험으로부터 사질토에서의 한계상태정수 결정에 관한 연구 (I) : 고찰 및 적용

  • Published : 2003.02.01

Abstract

Comprehensive review on the determination of critical state parameters in sandy soils from standard triaxial testing was performed to facilitate the application of critical state soil mechanics to the shear behavior of sandy soils. First, semantic differences in literature were clarified, inferring that critical state should be considered as the ultimate state at large deformation. Second, the characteristics of critical state parameters were discussed, and also the uniqueness of critical state line and the sensitivity of quasi-steady state condition were verified in relation to initial state, fabric, loading condition, and drainage condition. Third, as an example, the critical state soil mechanics was applied to evaluate the post-liquefaction shear strength, i.e. the reliable ultimate shear strength in liquified soils, in terms of critical state parameters.

한계상태 토질역학을 사질토의 전단거동에 대한 적용을 용이하게 하기 위해서, 표준삼축 시험으로부터 사질토에서의 한계상태정수 결정에 관하여 종합적인 고찰을 실시하였다. 첫째로, 문헌에 있는 어휘론적인 차이점들을 명확히 함으로써, 한계상태는 대변형에서의 궁극적인 최종상태를 나타냄을 추론하였다. 둘째로, 한계상태정수의 특성들에 관하여 검토하였고, 초기상태, 구주 하중조건 및 배수조건에 따른 한계상태선의 유일성과 유사한계상태조건의 민감성을 검증하였다. 셋째로, 한계상태정수로부터 액상화후 전단강도 즉 액상화된 흙에서의 신뢰할 수 있는 궁극적인 전단강도를 산정하기 위하여 한계상태 토질역학을 예제로서 적용하였다.

Keywords

References

  1. Journal of Geotechnical Engineering v.114 no.2 Undrained monotonic and cyclic strength of sand Alarcon-Guzman, A.;Leonards, G. A.;Chameau, J. L. https://doi.org/10.1061/(ASCE)0733-9410(1988)114:10(1089)
  2. 4th International Geotechnical Seminar Interpretation of CPT's and CPTU's, 2nd Part: Drained penetration of sands Baldi, G.;Bellotti, R.;Ghionna, V.;Jamiokowski, M.;Pasqualini, E.
  3. Geotechnique v.35 no.2 A state parameter for sands Been, K.;Jefferies, M. G.
  4. Geotechnique v.41 no.3 The critical state of sands Been, K.;Jefferies, M. G.;Hachey, J. https://doi.org/10.1680/geot.1991.41.3.365
  5. Physis and Mechanics of Soil Liquefaction The critical state line and its application to soil liquefaction Been, K.;P. V. Lade(ed.);J. A. Yamamuro (ed.)
  6. Geotechnique v.2 no.1 Discussion: Measurement of the shear strength of soils Bishop, A. W.
  7. Geotechnique v.4 no.1 Correspondence on shear characteristics of a saturated silt measured in triaxial compression Bishop, A. W. https://doi.org/10.1680/geot.1954.4.1.43
  8. Stress-strain behaviour of soils Shear strenght paramenters for undisturbed and remoulded soil specimens Bishop, A. W.;R. H. G. Parry(ed.)
  9. Geotechnique v.36 no.1 The strength and dilatancy of sands Bolton, M. D. https://doi.org/10.1680/geot.1986.36.1.65
  10. Geotechnical Testing Journal v.16 no.4 A new approach to measuring dilatancy in staurated sands Campanella, R. G.;Kokan, M. J. https://doi.org/10.1520/GTJ10288J
  11. Stabilit des Terres Pulvrents et Cohrentes Equililibre des Massifs Frottement Interne Caquto, A.
  12. Journal of the Boston Society of Cicil Engineers, January; reprinted in Contributions to Soil Mechanics(1925-1940) Characteristics of cohesionless soils affecting the stability of slopes and earth fills Casagrande, A.
  13. Journal of Soil Mechanics and Foundations v.91 no.SM 4 The Terzaghi Lecture: Role of the "Calulated risk" in earthwork and founsation engineering Casagrande, A.
  14. Geotechnique v.21 no.3 On liquefaction phenomena: report of lecture Casagrande, A. https://doi.org/10.1680/geot.1971.21.3.197
  15. The 5th Panamerican conference on soil Mechanics and Foundation Engineering v.5 Liquefaction and cyclic deformation of sands a critical review Casagrande, A.
  16. Ph. D. thesis, Harvard Soil Mechnics Series no.81 Liquefaction of sands Castro, G.
  17. Journal of Geotechnical Engineering v.101 no.6 Liquefacton and cyclic mobility of saturated sands Castro, G.
  18. Earthquake Geotechniccal Engineering Studies of the state paramenter and liquefaction resistance of sands Chen, Y. C.;Liao, T. S.;Seco e Pinto(eds.)
  19. Ph.D. Thesis, Georgia Institute of Technology Unsaturated Soil Stiffness and Post-Liquefacaction Shear Strenfth Cho,G. C.
  20. Canadian Geotechnical Journal v.32 An experimental examination of the critical state and other similar concepts for granular soils Chu, B. https://doi.org/10.1139/t95-104
  21. Evaluation of relative density and its role in geotechnical projects involving cohesionless soils, ASTM STP 523, American Society for Testing and Materials Prediction of drained strength of sands from relative density measurements Cornforth, D. H.
  22. Canadian Geotechnical Journal v.32 Shear Wave Velocity to Evaluate in situ Sate of Cohesionless Soils Cunning, J. C.;Robertson, P. K.;Sego, D. C. https://doi.org/10.1139/t95-081
  23. Journal of Geotechnical Engineering v.116 no.5 Loading systems, Sample penetation, and liquefaction Degregorio, V. B. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:5(805)
  24. Geotechnique v.46 no.3 Void ratio evolution inside shear bands in traxial sand specimens studied by computed tomography Destues, J.;Chambon, R.;Mokni, M.;Mazerolle, F. https://doi.org/10.1680/geot.1996.46.3.529
  25. Advance in the art of testing soils under cyclic conditions, Proceedings of a session sponsored by the Geotechnical Engineering Division in conjunction with the ASCE Convention in Detroit Liquefaction flow failure of silty sand by torsional cyclic tests Dobry, R.;Vasquez-Herrera, A.;Mohamad, R.;Vucetic, M.;Michigan(ed.);Khosla (ed.)
  26. Developments in Geotechnical Engineering v.30 Mechanics of Particulate materials Feda, J.
  27. Journal of Geotechnical Engineering v.122 no.6 Strain localization and undrained steady state of sand Finno, R. J.;Harris, W. W.;Mooney, M. A.;Viggiani, G. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:6(462)
  28. Geotechnique v.29 no.3 Effect of sand grain shape on interparticle friction, indirect measurements by Rowe's stress dilatancy theory Feossard, E. https://doi.org/10.1680/geot.1979.29.3.341
  29. Proceedings of 4th International Conference on Soil Mechanics and Foundation Engineering v.1 Research on datermining the density of sands by spoon penetration testing Gibbs, H. J.;Holtz, W. G.
  30. Journal of Geotechnical Engineering v.113 no.12 1-D Strain in normally consolidated cohesionless soils Hardin, B. O. https://doi.org/10.1061/(ASCE)0733-9410(1987)113:12(1449)
  31. Journal of Soil Mechanics and Foundations v.89 no.1 Elastic wave velocities in granular soils Hardin, B. O.;Richart, F. E.Jr
  32. An Essay in the History of Civil Engineering Coulomb's Memoir on Statics Heyman, J.
  33. Engineering Geology v.28 Some factors affecting the liquefaction and flow od saturated sands in laboratory tests Hird, C. C.;Hassona, F. A. K. https://doi.org/10.1016/0013-7952(90)90039-4
  34. Proceeding of Royal Society v.A286 The behavior of an assembly of rotund, rigid, cohesionless particles, I. Horne, M. R.
  35. Geotechnique v.43-3 The Rankine Lecture: Liquefaction and flow faihure during earthquakes Ishihara, K.
  36. Soils and Foundations v.15 Undrained deformation and liquefaction of sand under cyclic stress Ishara, K.;Tatsuoka, F.;Yasuda, S. https://doi.org/10.3208/sandf1972.15.29
  37. Special Issue of Soils and Foundations, Japanese Geotechnical Society Characterization of undrained behavior of soils in the reclaimed area of Kobe Ishihara, K.;Cubrinovski, M.;Nonaka, T.
  38. Invited Lecture, ISOPT-1, New correlations of penetration test for design practice Jamiolkowski, M.;Chionna, V. N.;Lancellotta, R.;Pasqualini
  39. Journal of Geotechnical Engineering v.116 no.6 Minimum undrained strength of two sands Konrad, J. M. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:6(932)
  40. Journal of Geotechnical Engineering v.116 no.6 Minimum underained strength versus steady-state strength of sands Konrad, J. M. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:6(948)
  41. Report EL-6800, Electric Power Research Institute EPRI Manual on Estimating Soil Properties for Foundation Design Kulhawy, F. H.;Mayne, P. W.
  42. Soil Mechanics Lambe, T. W.;Whitman, R. V.
  43. Proceedings of 3rd Internation Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics v.1 Static shear and liquefaction potential of sand Lee, C. J.
  44. Journal of soil Mechanics and foundations Division v.93 no.SM6 Drained stength characteristics of sands Lee, K. L.;Seed, H. B.
  45. Journal of Geotechnical and Geotenvironmental Engineering v.124 no.12 Linear representation of steadystate line for sand Li, X. S.;Wang, Y. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:12(1215)
  46. International Symposium on Soils under Cyclic and Transient Loading Stress-strain aspects of cohesionless soils under cyclic and transient loading Luong, M. P.
  47. Journal of Geotechnical Engineering v.103 no.11 SPT and relative density in coarse sands Marcuson, W. F.Ⅲ;Bieganousky, W. A.
  48. Proceedings of International Symposium on cone Penetration Testimg, CPT '95 CPT detemination of overconsolidation ratio and lateral stress in clean quartz sands Mayne, P. W.
  49. Canadian Geotechnical Journal v.29 Observations on static and cyclic sand-liquefaction methodologies McRoberts, E. C.;Sladen, J. A. https://doi.org/10.1139/t92-072
  50. Journal of the Soil Mechanics and Foundations Division v.82 no.SM1 Penetration tests and bearing capacity of cohesionless soils Meyerhof, G. G.
  51. Journal of Geotechnical and Geoenvironmental Engineering v.124 no.11 A unique critical state for sand Mooney, M. A.;Finno, R. J.;Viggiani, M. G. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:11(1100)
  52. Canadian Geotechnical Journal v.25 Constant-volume friction angle of granular materials Negussey, D.;Wijewickreme, W. K. D.;Vaid, Y. P. https://doi.org/10.1139/t88-006
  53. Canadian Geotechnical Journal v.31 no.1 Uniqueness of steady state and liquefaction potential Negussey, D.;Islam, M. S. https://doi.org/10.1139/t94-015
  54. Journal of Geotechnical Engineering v.107 no.GT5 The steady atate of deformation Poulos, S. J.
  55. Journal of Geotechnical Engineering v.111 no.6 Liquefaction evaluation procedure Poulos, S. J.;Castro, G.;France, J. W. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:6(772)
  56. Journal of Geotechnical Engineering v.114 no.1 Liquefaction evaluation procedure Poulos, S. J.;Castro, G.;France, J. W. https://doi.org/10.1061/(ASCE)0733-9410(1988)114:2(251)
  57. Philosophical magazine and Journal of Science, Series 5 v.20 no.127 On the dilatancy of media composed of rigid particles in contact. With ecperimental illustrations Reynolds, O. https://doi.org/10.1080/14786448508627791
  58. Journal of Geotechnical and Geoenvironmental Engineering v.123 no.3 Factors affecting apparent position of steady-state line Riemer, M. F.;Seed, R. B. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:3(281)
  59. Cone Penetration Testing in Geotechinal Practice Robertson, P. K.;Powell, J. J. M.
  60. Geotechnique v.8 On the yielding of soils Rocoe, K. H.;Schofield, A. N.;Wroth, C. P.
  61. Journal of Geotechnical Engineering v.105 no.7 Anisotropic shear wave modulus due to stress anisotropy Rosler, S. K.
  62. Proceedings of Royal Society, A v.269 The Stress-dilatancy relation for static equilibrium of an assembly of particles in contact Rowe, P. W. https://doi.org/10.1098/rspa.1962.0193
  63. Journal of Soil Mechanics and Foundations v.89 no.SM3 Stress-dilatancy, earth pressures, and slopes Rowe, P. W.
  64. Charcterization and Process Monitoring Soils and Waves Particulate Materials Behavior Santamarina, J. C.;Klein, K. A.;Fam, M. A.
  65. Critical State Soil Mechanics Schofield, A. N.;Wroth, P.
  66. Ground Engineering Don't use the C word Schofield, A. N.
  67. Journal of the Geotechnical Engineering Dividion v.105 no.GT2 Soil liquefaction and cyclic mobility evanuation for level ground during earthquakes Seed, H. B.
  68. Geotechnique v.36 no.3 Standard penetration test procedures and the effects in sands of overburden pressure, relative density, particle size, ageing and overconsolidation Skempton, A. W. https://doi.org/10.1680/geot.1986.36.3.425
  69. Canadian Geotechnical Journal v.22 The liquefaction of sands, a collapse surface approach sladen, J. A.;D'Hollander, R. D.;Krahn, J. https://doi.org/10.1139/t85-076
  70. Fundamentals of Soil Mechanics Taylor, D. W.
  71. Geotechnique v.40 no.4 Discussion to An experimental and theoretical comparison between static and dynamic torsional soil test Tatsuoka, F.;Shibuya, S.;Teachavorasinskum, S.;Park, C. S.;Bolton, M. D.;Wilson, J. M. R. https://doi.org/10.1680/geot.1990.40.4.659
  72. Soil Mechanics in Engineering Practice(1st Edition) Terzaghi, K.;Peck, R. B.
  73. Soil Mechanics in Engineering Practice(2nd Edition) Terzaghi, K.;Peck, R. B.
  74. Canadian Journal of Soil Science v.64 The Measurement of soil water content using a portable TDR hand probe Topp, G. C.;Davis, J. L.;Bailey, W. G.;Zebchuk, W. D. https://doi.org/10.4141/cjss84-033
  75. Special Issue of Soils and Foundations Undrained deformation and strength characteristics of soils from reclaimed deposits in Kobe Tsukamoto, Y.;Ishihara, K.;Nonaka, T.
  76. Discussion, Soilsa and Foundations v.125 no.3 Effect of atatic shear on resistance to liquefaction Vaid, Y. P.;Chern, J. C.
  77. Canadian Geotechnical Journal v.127 Stress path and steady state Vaid, Y. P.;Chung, E. K. F.;Kuerbis, R. H.
  78. Journal of Geotechnical Enginerring v.121 no.2 Liquefaction and Postliquefaction Behavior of sand Vaid, Y. P.;Thomas, J. https://doi.org/10.1061/(ASCE)0733-9410(1995)121:2(163)
  79. Physics and Mechanics of Soil Liquef , Fundamental factors affecting liquefaction susceptibility of sands Vaid, Y. P.;Sivathayalan, S.;Lade & Yamsmuro (eds)
  80. Geotechnical Tecting Journal v.22 no.3 Influence of specimen-reconstituting method on the undrained responde of sand Vaid, Y. P.;Sivathayalan, S.;Stedman, D. https://doi.org/10.1520/GTJ11110J
  81. Soils and Foundations v.36 no.2 The steady state of sandy soils Verdugo, R.;Ishihara, K. https://doi.org/10.3208/sandf.36.2_81
  82. First International Conference on Earthquake Geotechnical Engineering v.1 Initial Soil Structure and Steady-State Strength Verdugo, R.;P. Castillo;Briceno, L.;K. Ishihara (eds.)
  83. Journal of Engineering Mechanics v.121 no.7 Strain localization in extension tests on granular materials Yamamuro, J. A.;Lade, P. V. https://doi.org/10.1061/(ASCE)0733-9399(1995)121:7(828)
  84. Canadian Geotechnical Journal v.34 Static Liquefaction of Very Loose Sands Yamamuro, J. A.;Lade, P. V. https://doi.org/10.1139/cgj-34-6-905
  85. Journal of Geotechnical and Geoenvironmental Engineering v.124 no.9 Steady-State Concepts and Static Liquefaction of Silty Sands Yamamuro, J. A.;Lade, P. V. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:9(868)
  86. Proceedings of the First International Symposium on Penetration, A. A. Balkema v.1 Empirical formula of SPT blow counts for gravely soils Yoshida, Y.;A.A Balkema
  87. Canadian Geotechnical Journal v.36 Undrained shear strength of clean sands to trigger flow liquefaction Yoshimine, M.;Robertson, P. K.;Wride, C. E. https://doi.org/10.1139/cgj-36-5-891