Analysis of Electroosmosis Drainage in Clayey Soil

점성토의 전기삼투 배수에 관한 분석

  • 김병일 (한양대학교 토목.환경공학과) ;
  • 한상재 (한양대학교 토목.환경공학과) ;
  • 김수삼 (한양대학교 토목.환경공학과)
  • Published : 2003.02.01

Abstract

The characteristics of electroosmosis drainage in clayey soil were investigated, when an electrokinetic technique was applied for the purpose of separating heavy metals in contaminated ground. A series of laboratory tests, considering voltage, zeta potential, pH distribution, and current, were performed for a lead-contaminated kaolin. The results of laboratory tests were compared with numerical analysis of finite difference method. The 1311owing conclusions were obtained: The flow velocity in electroosmosis was very sensitive to the chemical and electrical characteristics of the clay. As the concentration of ion increases, the flow rate decreases and the amount of drainage also decreases as time elapses.

본 논문은 점성토 지반에 동전기 공법을 적용할 때 지반내에서 발생하는 현상과 그 특성을 고려하여 전기삼투 현상을 예측하고자 하였다. 이를 위하여 납으로 오염된 카올린에 대해 실내실험을 수행하여, 동전기 처리 동안 변화하는 시료의 전압, 전류, 제타포텐셜, pH분포 등의 물리 화학적 현상 간 상관성을 고려한 전기삼투 유한차분 수치 해석 프로그램을 개발하여 실험 결과와 비교하고 각 현상을 검토하였다. 그 결과, 전기삼투 흐름은 점토의 화학적 특성과 전기적 특성 변화에 매우 민감하였다. 간극수의 이온 농도가 증가하면 흐름속도는 감소하였으며, 시간에 따라 배수량은 감소하였다.

Keywords

References

  1. 한국지반공학회논문집 v.16 no.6 점성토 전기삼투 배수와 Zeta Potential의 상관성 김수삼;한상재;임성철
  2. 한국지반공학회논문집 v.18 no.1 중금속 오염토의 Electrokinetic 정화시 토체의 전기화학적 특성의 모델링 한상재;김수삼;조용실
  3. 대한토목학회 논문집 v.22 no.4-C 토질 특성을 고려한 동전기 정화 시스템에서의 pH 변화 해석 한상재;김수삼;오승록
  4. J. of Geotechnical Engineering v.122 no.3 Electrokinetic remedation. Ⅱ: Theorectical model Acar, Y. B.;Alshawabkeh, A. N. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:3(186)
  5. J. Envir. Sci. and Health Part(a), Envir. Sci. and Engrg. v.25 no.6 Electrochemical processing of soils: Theory of pH gradient development by diffusion migration and linear convestion Acar, Y. B.;Gale, R. J.;Putnam, G.;Hamed, J.;Wong, R. https://doi.org/10.1080/10934529009375590
  6. J. of Geotechnical Engineering v.120 no.5 Impact of system chemistry in electroosmosis in contaminated soil Eykholt, G. R.;Daniel, D. E. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:5(797)
  7. J. of Geotechnical Engineering v.117 no.2 Pb(Ⅱ) removal from kaolinite by electrokinetics Hamed, J.;Acar, Y. B.;Gale, R. J.
  8. Zeta potential in colloid science Hunter, R. J.
  9. Can. Geotech. J. The Effects of Organic fluids on Physicochemical Parameters of Fine-grained Soils Kaya, A.
  10. International J. for Numerical Materials in Engineering v.5 A finite element solution of coupled electrokintic and hydrodynamic flow in porous media Lewis, R. W.;Garner, R. W. https://doi.org/10.1002/nme.1620050105
  11. J. of Soil Mechanics and Foundation. v.99 no.SM8 Numerical analysis of electro-osmotic flow in soils Lewis, R. W.;Humpheson, C.
  12. Proceedings of The Second International Congress on Environmental Geotechnics v.2 Experimrntal and midelling studies on electrokintic extraction of lead from Georgia kaolinite Menon, R. M.;Hsu, C. n.;Yeung, A. T.
  13. Fundamental of soil behavior(2nd ed.) Mitchell, J. K.
  14. Can. Geotech. J. v.31 Quantitative determination of potential distribution in Stern-Gouy double-layer model Shang, J. Q.;Lo, K. Y.;Quigley, R. M. https://doi.org/10.1139/t94-075
  15. Topical Report for Tasks, Monsanto company. DOE Contract Number, DE-AR21-94MC31185 Electrokintic modeling Shapiro, A. P.
  16. J. Geotech. Eng. Div. v.102 no.5 Electro-osmotic consolidation of soils Wan, T. Y.;Mitchell, J. K.
  17. Geotechnique v.43 no.1 Coupled fluid, electrical and chemical flows in soil Yeung, A. T.;Mitchell, J. K. https://doi.org/10.1680/geot.1993.43.1.121