Topology Optimization of Plane Structures with Multiload Case using a Lower order Finite Element

저차 유한요소를 이용한 다하중 경우를 가지는 평면구조물의 위상최적화

  • Published : 2003.03.01

Abstract

An optimization Program is developed to produce new topologies of plane structures under multiload case. A four-node finite element is used in the response analysis to reduce the computation time and to ultimately achieve practical topology optimization. The bilinear finite element is prone to produce chequer-boarding phenomenon and a simple filtering process is therefore adopted. An artificial material model is employed to represent the structural material and the resizing algorithm based on the optimality criteria is adopted to update the material density parameter during optimization process. With newly developed optimization program, the comparison study has been made between single and multiload cases and its results are described in this paper. From numerical results, it appears that multiload case should be considered to achieve the practical topology optimization.

본 연구를 통하여 다하중 경우를 가지는 평면구조물의 위상을 도출하기 위한 최적화 프로그램을 개발하였다. 계산시간을 줄이고 실용적인 위상최적화를 수행하기 위하여 사절점 저차 유한요소를 이용하였다. 저차 유한요소를 사용하여 도출되는 위상에 나타나는 체크무늬현상을 제거하기 위해 여과절차를 도입하였다. 위상최적화를 수행하기 위하여 가등질화된 물질로 구조재를 표현하였고 물질을 재분배하기 위하여 최적정기준을 바탕으로 유도한 크기조절 알고리듬을 도입하였다. 개발된 프로그램을 이용하여 단하중 경우와 다하중 경우에 대한 평면 구조물의 위상을 도출하고 이를 비교분석하였다. 본 연구를 통하여 구조물의 실제적인 위상을 도출하기 위해서는 다하중 경우가 반드시 고려되어야 하는 것으로 나타났다.

Keywords

References

  1. Cheng, G. and Olhoff, N., 'An investigation concerning optimal design of solid elastic plates', International Journal of Solids and Structures, Vol. 17, 1981, pp.305~323 https://doi.org/10.1016/0020-7683(81)90065-2
  2. 이상진, '위상최적화의 개론', 특집기사, 한국전산구조공학회지, 제13권, 제3호, 2000, pp.25~33
  3. Bensoe, M. P. and Kikuchi, N., 'Generating optimal topologies in structural design using homogenization method', Computer Methods in Applied Mechanics and Engineering, Vol. 71, 1988, pp.197~224 https://doi.org/10.1016/0045-7825(88)90086-2
  4. Hinton, E. and Sienz, J., 'Fully stressed topo- logical design of structures using an evolutionary approach', Engineering Computation, Vol. 12, 1995, pp.229~244 https://doi.org/10.1108/02644409510799578
  5. Walter, F. and Mattheck, C., 'Local stiffening and sustaining of shell structures by SKO and CAO', Proceedings of International Conference on Structural optimization, Computational Mechanics, Southampton UK, 1993, pp.181~188
  6. Xie, Y. M. and Steven, G. P., 'A simple evolu- tionary procedure for structural optimization', Computers & Structures, Vol. 49, 1993, pp.885-896
  7. Tenek, L. H. and Hagiwara, I., 'Static and vibrational shape and topology optimization using homogenization and mathematical programming', Computer Methods in Applied Mechanics and En- gineering, Vol. 109, 1993, pp.143-154 https://doi.org/10.1016/0045-7825(93)90229-Q
  8. Lee, S. J., Bae, J. E. and Hinton, E., 'Shell topology optimization using the layered artificial material model', International Journal for Nume- rical Methods in Engineering, Vol. 47, 2000, pp.843~867 https://doi.org/10.1002/(SICI)1097-0207(20000210)47:4<843::AID-NME801>3.0.CO;2-5
  9. Zhou, M., Shyy, Y. K. and Thomas, H. L., 'Checkerboard and minimum member size control in topology optimization', Structural Optimization, Vol. 21, 2001, pp.152-158 https://doi.org/10.1007/s001580050179
  10. Youn, S. K and Park, S. H., 'A study on the shape extraction process in the structural topology optimization using homogenization material', Computers & Structures, Vol. 62, 1997, pp. 527~538 https://doi.org/10.1016/S0045-7949(96)00217-9