Parameter Identification of an Electro-Hydraulic Servo System Using an Improved Hybrid Neural-Genetic Multimodel Algorithm

개선된 신경망-유전자 다중모델에 의한 전기.유압 서보시스템의 파라미터 식별

  • 곽동훈 (부산대학교 지능기계공학과) ;
  • 정봉호 (부산대학교 대학원 지능기계공학과) ;
  • 이춘태 (부산대학교 대학원 지능기계공학과) ;
  • 이진걸 (부산대학교 기계공학부)
  • Published : 2003.05.01

Abstract

This paper demonstrates that an improved hybrid neural-genetic multimodel parameter estimation algorithm can be applied to the structured system identification of an electro-hydraulic servo system. This algorithm is consists of a recurrent incremental credit assignment (ICRA) neural network and a genetic algorithm, The ICRA neural network evaluates each member of a generation of model and the genetic algorithm produces new generation of model. We manufactured an electro-hydraulic servo system and the improved hybrid neural-genetic multimodel parameter estimation algorithm is applied to the task to find the parameter values, such as mass, damping coefficient, bulk modulus, spring coefficient and disturbance, which minimize total square error.

Keywords

References

  1. Niksefat, Navid and Sepehri, Nariman, 'Robust Force Controller Design for an Electro-Hydraulic Actuator Based on Nonlinear Model,' Proc. Int. Conf. on Robotics and Automation, pp. 200-206, 1999 https://doi.org/10.1109/ROBOT.1999.769967
  2. Tan, Han-Shue, 'Model Indentification of an Automotive Hydraulic Active Suspension System,' Proc. AACC, pp. 2920-2924, 1997 https://doi.org/10.1109/ACC.1997.611992
  3. Majjad, R., 'Estimation of Suspension Parameters,' Proc. IEEE Int. Conf. on Control Application, pp. 522-527, 1997 https://doi.org/10.1109/CCA.1997.627709
  4. Petridis, Vassilios, Paterakis, Emmanuel and Kehagiaas, Athanasios, 'A Hybrid Neural Genetic Multimodel Parameter Estimation Algorithm,' IEEE Trans. on Neural Networks, Vol. 9, No. 5, pp. 862-876, 1998 https://doi.org/10.1109/72.712158
  5. Kwak, D. H., Lee, C. T., Jung, B. H., Lee, J. K., 'Parameter Identification using Hybrid Neural-Genetic Algorithm in Electro-Hydraulic Servo System,' Journal of the Korean Society of Precision Engineering, Vol. 19, No. 11, pp. 192-199, 2002
  6. Feldkamp, L. A., Puskorius, G. V., Davis, Jr.L.I. and Yuan, F., 'Neural Control Systems Trained by Dynamic Gradient Methods for Automotive Applications,' IEEE Int. Joint Conf. on Neural Network, Vol. 2, pp. 798-804, 1992 https://doi.org/10.1109/IJCNN.1992.226889
  7. Onat, Ahmet, Kita, Hajime, Yokohama and Nishikawa, Yoshikazu, 'Recurrent neural networks for Reinforcement Learing: Architecture, Learning Algorithms and Internal Representation,' IEEE Int. Conf. on Neural Network, Vol. 3, pp. 2010-2015, 1998 https://doi.org/10.1109/IJCNN.1998.687168
  8. Rubaai, Ahmed and Kotaru, Raj, 'Adaptation Learning Control Scheme a High Performance Permanent Magnet Stepper Motor Using Online Random Training of Neural Networks,' IEEE Trans. on Industry Applications, Vol. 37, No. 2, 2001 https://doi.org/10.1109/28.913714