DOI QR코드

DOI QR Code

Effects of Constitutive Androstane Receptor (CAR) on PBRU Transactivation of CYP2B Gene in Different Culture Cell Types: Comparison Between Hep G2 and COS-cells

배양세포의 Type에 따른 Constitutive Androstane 수용체 (CAR)의 CYP2B PBRU 전사활성 효과: Hep G2와 COS 세포의 비교

  • 민계식 (진주산업대학교 미생물공학과)
  • Published : 2003.06.01

Abstract

The objective of this study was to examine if transient transfection of CAR can transactivate CYP2B1 PBRU reporter gene in COS cells in which the endogenous CYP2B1 gene is not induced by PB. In non-transfeced cells of both Hep G2 and COS, the endogeneous expression of CAR was not detected by antibody against CAR. When cultured cells were transfected with CAR expression plasmid, mCAR1-GFP, both cell types expressed high levels of CAR protein and could allow to examine the effect of CAR in PBRU transactivation. Both cell types expressed endogenous RXR and transfection of RXR expression plasmid dramatically increased its protein expression. Whereas CAR transactivated PBRU2C1Luciferase about 12 fold as compared to 2C1Luciferase in Hep G2 cells, it did not stimulate the luciferase activity of the PBRU reporter gene in COS cells. These results indicate that Hep G2 cells can respond to CAR differently from COS cells, and suggest that factors other than CAR and RXR may be required in inducing PBRU activation and the expression of these factors may be different between liver and kidney.

최근 Phenobarbital에 의해서 발현되는 CYP2B유전자의 발현촉진 매개인자로서 Constitutive Androstane Receptor (CAR)가 최근에 규명되었다. 사람의 간암세포인 HepG2 cell line에 CAR유전자를 transfection시켰을 경우 PBRU의 활성을 촉진시켰다. 지금까지 연구된 CAR의 역할은 주로 간세포 내에서 cytochrome P4502B 유전자의 발현을 촉진하는 Phenobarbital의 매개체로서 알려져 있다. 다세포동물에서 각각의 분화된 세포는 독특한 유전자의 발현 Pattern을 갖고 있어서 어느 특정한 세포에서 일어나는 유전자의 발현특징이나 작용기전 혹은 기능이 다른 종류의 세포에서는 일어나지 않거나 상이한 기전에 의해서 조절된다. 이러한 세포간 특이성을 이용하여 유전자 발현에 관여하는 인자들을 규명하는데 기초적 자료로 이용될 수 있다. 따라서 본 연구의 목적은 CYP2B유전자의 발현이 일어나지 않는 콩팥세포 line (COS)에서 CAR 단백질 수용체가 PBRU의 활성촉진에 영향을 미치는지의 여부를 조사하고자 하였다. Control 상태의 Hep G2와 COS 배양세포에서는 CAR 단백질의 발현이 거의 나타나지 않았다. mCAR1-GFP를 transfection 한 후 CAR antibody를 이용하여 immunoblot을 시행하였을 경우, Hep G2 세포에서는 발현이 비교적 약하게 나타났지만, COS 세포에서는 강한 mCAR1-GFP 단백질의 발현을 보였다. 한편, GFP antibody를 이용하여 immunoblot을 시행하였을 경우에는 COS 세포에서 강한 mCAR1-GFP 단백질의 발현을 나타내었을 뿐만 아니라 Hep G2 세포에서도 명백히 단백질의 발현을 관찰할 수 있었다. 또한, Hep G2와 COS세포 모두에서 endogenous RXR의 발현이 일어남을 확인하였고 RXR expression plasmid를 transfection시켰을 때 두 세포 모두에서 단백질의 발현이 현저하게 증가되었다. Constitutive Androstane Receptor (CAR)에 의한 CYP2B의 PBRU 활성효과를 다르게 분화된 세포에서 차이가 일어나는지를 비교하기 위하여 CAR에 의해 매개되는 PBRU의 transactivation효과를 Hep G2와 COS세포에서 조사하였다. Hep G2 세포에서는 transfection된 CAR의 발현에 의해 firefly luciferase 보고단백질의 활성이 약 12배 증가하였다. CAR 발현유전자를 15 ng transfection하였을 때 주어진 보고유전자의 양에 대하여 최대반응을 나타내었고 CYP2B1PBRU가 제거된 CYP2C1 promotor/firefly luciferase를 보고유전자로 사용하였을 때는 CAR에 의한 luciferase의 활성이 나타나지 않았다. Hep G2와는 달리, COS세포에서는 transfection된 CAR의 발현이 PBRU에 의한 firefly luciferase보고단백질의 발현에 영향을 주지 못하였다. 이러한 결과들은 분화된 세포의 종류에 따라서 constitutive androstane receptor의 CYP2BPBRU 활성효과가 다르게 나타날 수 있음을 제시할 뿐만 아니라, 간세포에서 Phenobarbital에 의한 PBRU의 활성유도에 영향을 주는 endogenous 매개 인자들 중 CAR와 RXR과는 다른 전사조절인자들이 필요로 하며 이러한 인자들의 발현이 콩팥 세포에서는 다르게 존재함을 시사한다.

Keywords

References

  1. Axelrod, J. 1955. The enzymatic deamination of am-phetamine (benzedrine). J. Bioi. Chem. 214, 753-763
  2. Baes, M., T. Gulick, H. S. Choi, M. G. Martinoli, D. Simha and D. D. Moore. 1994. A new orphan member of the nuclear hormone receptor superfamily that interacts with a subset of retinoic acid response ele-ments. Mol. Cell Bioi. 14, 1544-1551
  3. Bhagwat, S. V., B. C. Leelavathi, S. K. Shankar, M. R. Boyd and V. avindranath. 1995. Cytochrome P450 and associated monooxygenase activities in the rat and human spinal cord-induction, immunological char-acterization, and immunocytochemical localization. Neurosci. 68, 593-601 https://doi.org/10.1016/0306-4522(95)00071-P
  4. Brodie, B. B., J. Axelrod, J. R. Cooper, L. Gaudette, B. N. LaDu, C. Mitoma and S. Udenfriend. 1955. Detox-ication of drugs and other foreign compounds by liver microsomes. Science 121, 603-604 https://doi.org/10.1126/science.121.3147.603
  5. Choi, H-S., M. Chung, I. Tzameli, D. Simha, Y-K. Lee, W. Seol and D. Moore. 1997. Differential trans-activation by two isoforms of the orphan nuclear hormone receptor CAR. J. BioI. Chem. 272, 23565-23571 https://doi.org/10.1074/jbc.272.38.23565
  6. Conney, A. H., C. Davison, R. Gasten and J. J. Burns. 1960. Adaptive increase in drug-metabolizing enzymes induced by phenobarbital and other drugs. J. Pharmacal. Exp. Therap. 130, 1-8
  7. Cooper, D. Y., S. Levine, S. Narasimhulu, O. Ro-senthal and R. W. Estabrook. 1965. Photochemical action spectrum of the terminal oxidase of 'mixed function oxidase system. Science. 147, 400-402 https://doi.org/10.1126/science.147.3656.400
  8. Forman, B. M., I. Tzameli, H. S. Choi, J. Chen, D. Simha, W. Seol, R. M. Evans and D. D. Moore. 1998. Androstane metabolites bind to and deactivate the nuclear receptor CAR-beta. Nature. 395, 612-615 https://doi.org/10.1038/26996
  9. Honkakoski, P., A. Kojo and M. A. Lang. 1992. Reg-ulation of the mouse liver cytochrome P450 2B subfamily by sex hormones and phenobarbital. Biochemical. J. 285, 979-983
  10. Honkakoski, P., R. Moore, K. Washburn and M. Negishi. 1988. Activation by diverse xenochemicals of the 51-base pair phenobarbital-response enhancer module in the CYP2B10 gene. Mol. Pharmacal. 53, 597-601
  11. Honkakoski, P. and M. Negishi. 1997. Character-ization of a phenobarbital-responsive enhancer mod-ule in mouse P450 Cyp2blO gene. J. BioI. Chem. 272, 14943-14949 https://doi.org/10.1074/jbc.272.23.14943
  12. Honkakoski, P. and M. Negishi. 2000. Regulation of cytochrome P450 (CYP) genes by nuclear receptors. Biochem. J. 347, 321-337 https://doi.org/10.1042/0264-6021:3470321
  13. Honkakoski, P., I. Zelko, T. Sueyoshi and M. Negishi. 1998. The nuclear orphan receptor CAR-retinoid X receptor heterodimer activates the phenobarbital-responsive enhancer module of the CYP2B gene. Mol. Cell Bioi. 18, 5652-5658
  14. Jean, A., A. Reiss, M. Desrochers, S. Dubois, E. Trottier, Y. Trottier, L. Wirtanen, M. Adesnik, D. J. Waxman and A. Anderson. 1994. Rat liver cyto-chrome P450 2B3: structure of the CYP2B3 gene and immunological identification of a constitutive P450 2B3-like protein in rat liver. DNA Cell BioI. 13, 781-792 https://doi.org/10.1089/dna.1994.13.781
  15. Johnson, E. F., K. J. Griffin and U. S. Keith. 1999. Molecular mechanisms of cytochrome P-450 induction by xenobiotics: An expanded role for nuclear hormone receptors. Molecular Pharmacology. 56, 851-857
  16. Kawamoto, T., T. Sueyoshi, I. Zelko, R. Moore, K. Washburn and M. Negish. 1999. Phenobarbital responsive nuclear translocation of the receptor CAR in induction of the CYP2B gene. Mol. Cell Bioi. 19, 6318-6322
  17. Kim, J. and B. Kemper. 1997. Phenobarbital alters protein binding to the CYP2Bl/2 phenobarbital-responsive unit in native chromatin. J. Bioi. Chem. 272, 29423-29426 https://doi.org/10.1074/jbc.272.47.29423
  18. Kim, J., G. Min and B. Kemper. 2001. Chromatin assembly enhances binding to the CYP2B1 phenobar-bital-responsive unit (PBRD) of nuclear factor-1, which binds simultaneously with constitutive andro-stane receptor (CAR)/retinoid $\times$receptor (RXR) and enhances CAR/RXR-mediated activation of the PBRU. J. Biol. Chem. 276, 7559-7567 https://doi.org/10.1074/jbc.M008090200
  19. Kim, J., I. Rivera-Rivera and B. Kemper. 2000. Tissue-specific chromatin structure of the CYP2B1 phenobar-bital-responsive unit and proximal promotor and modulation by phenobarbital. Nucleic Acids Res. 28, 1126-1132 https://doi.org/10.1093/nar/28.5.1126
  20. Liu, S., Y. Park, I. Rivera-Rivera, H. Li and B. Kemper. 1998. Nuclear factor-1 motif and redundant regulatory elements comprise phenobarbital-responsive enhancer in CYP2B1/2. DNA Cell Bioi. 17, 461-470 https://doi.org/10.1089/dna.1998.17.461
  21. Min, G., J. K. Kemper and B. Kemper. 2002. Glucocorticoid receptor-interacting protein 1 mediates ligand-independent nuclear translocation and activation of constitutive androstane receptor in uiuo. J. BioI. Chem. 277, 26356-26363 https://doi.org/10.1074/jbc.M200051200
  22. Moore, D. and I. Tzameli. 2001. Role reversal: new insights from new ligands for the xenobiotic receptor CAR. TRENDS in Endocrinology and Metabolism 12, 7-10 https://doi.org/10.1016/S1043-2760(00)00332-5
  23. Moore, L. B., D. J. Parks, S. A. Jones, R. K. Bledsoe, T. G. Consler, J. B. Stimmel, B. Goodwin, C. Liddle, S. G. Blanchard, T. M. Willson, J. L. Collins and S. A. Kliewer. 2000. Orphan nuclear receptors con-stitutive androstane receptor and pregnene X receptor share xenobiotic and steroid ligands. J. Biol. Chern. 275, 15122-15127 https://doi.org/10.1074/jbc.M001215200
  24. Mueller, G. C. and J. A. Miller. 1949. The reductive cleavage of 4-demethylaminoazobenzene by rat liver: The intracellular distribution of the enzyme system and the requirement for triphosphopyridine nucleotide. J. BioI. Chem. 180, 1125-1136
  25. Negishi, M. and P. Honkakoski. 2000. Regulation of cytochrome P450 (CYP) genes by nuclear receptors. Biochem. J. 347, 321-337 https://doi.org/10.1042/0264-6021:3470321
  26. Negishi, M. and T. Sueyoshi. 2001. Phenobarbital response elements of Cytochrome P450 genes and nuclear receptors. Annu. Rev. Pharmacol. Toxicol. 41,123-143 https://doi.org/10.1146/annurev.pharmtox.41.1.123
  27. Park, Y., H. Li and B. Kemper. 1996. Phenobarbital induction mediated by a distal CYP2B2 sequence in rat liver transiently transfected in situ. J. Biol. Chem. 271, 23725-23728 https://doi.org/10.1074/jbc.271.39.23725
  28. Ramsden, R., N. B. Beck, K. M. Sommer and C. J. Omiecinski. 1999. Phenobarbital responsiveness con-ferred by the 5-flanking region of the rat CYP2B2 gene in transgenic mice. Gene. 228, 169-179 https://doi.org/10.1016/S0378-1119(98)00612-X
  29. Ramsden, R., K. M. Sommer and C. J. Omiecinski. 1993. Phenobarbital induction and tissue-specific ex-pression of the rat CYP2B2 gene in transgenic mice. J. BioI. Chem. 268, 21722-21726
  30. Savas, U., K. J. Griffin and E. F. Johnson. 1999. Molecular mechanisms of cytochrome P-450 induction by xenobiotics: An expanded role for nuclear hormone receptors. Molecular Pharmacology. 56, 851-857
  31. Shervington, A. 1999. CYP2B2 gene expression and phenobarbital induction in kidneys using an in vitro transcription system. Biochem. Mol. BioI. Int. 47, 233-237
  32. Strobel, H. W., A. Y H. Lu, J. Heidma and M. J. Coon. 1970. Phosphotidylcholine requirement in the enzymatic reduction of hemoprotein P-450 and in fatty acid, hydrocarbon, and drug hydroxylation. J. Biol. Chem. 245, 4851-4954
  33. Sueyoshi, T., T. Kawamoto, I. Zelko, P. Honkakoski and M. Negishi. 1999. The repressed nuclear receptor CAR responds to phenobarbital in activating the human CYP2B6 gene. J. Biol. Chem. 274, 6043-6046 https://doi.org/10.1074/jbc.274.10.6043
  34. Sueyoshi, T. and M. Negishi. 2001. Phenobarbital response elements of cytochrome P450 genes and nuclear receptors. Annu. Rev. Pharmacol. Toxicol. 41, 123-143 https://doi.org/10.1146/annurev.pharmtox.41.1.123
  35. Suwa, Y, Y Mizukami, K. Sogawa and Y. FujiiKuriyama. 1985. Gene structure of a major form of phenobarbital-inducible cytochrome P-450 in rat liver. J. Biol. Chem. 260, 7980-7984
  36. Trottier, E., A. Belzil, C. Stoltz and A. Anderson. 1995. Localization of a phenobarbital-responsive el-ement (PBRE) in the 5'-flanking region of the rat CYP2B2 gene. Gene 158, 263-268 https://doi.org/10.1016/0378-1119(94)00916-G
  37. Tzameli, I., P. Pissios, E. G. Schuetz and D. D. Moore. 2000. The xenobiotic compound 1,4-bis[2-(3,5dichloropyridyloxy)] benzene is an agonist ligand for the nuclear receptor CAR. Mol. Cell Bioi. 20, 2951-2958 https://doi.org/10.1128/MCB.20.9.2951-2958.2000
  38. Waxman, D. J. 1999. P450 gene induction by struc-turally diverse xenochemicals: central role of nuclear receptors CAR, PXR, and PPAR. Archives of Biochemistry and Biophysics 369, 11-23 https://doi.org/10.1006/abbi.1999.1351
  39. Waxman, D. J. and L. Azaroff. 1992. Phenobarbital induction of cytochrome P-450 gene expression. Biochem. J. 281, 577-592
  40. Wei, P., J. Zhang, M. Egan-Hafley, S. Liang and D. D. Moore. 2000. The nuclear receptor CAR mediates specific xenobiotic induction of drug metabolism. Nature. 407, 920-923 https://doi.org/10.1038/35038112

Cited by

  1. Effects of TK Promotor and Hepatocyte Nuclear Factor-4 in CAR-Mediated Transcriptional Activity of Phenobarbital Responsive Unit ofCYP2BGene in Monkey Kidney Epithelial-Derived Cell Line COS-7 vol.1091, pp.1, 2006, https://doi.org/10.1196/annals.1378.072