Prediction of Fatigue Life in 2 Ply Rubber/Cord Laminate

2층 고무/코드 적층판의 피로 수명 예측

  • 임동진 (전남대학교 기계공학과 대학원) ;
  • 이윤기 (조선이공대학 자동차과) ;
  • 윤희석 (전남대학교 공과대학 기계시스템공학부) ;
  • 김민호 (기아자동차)
  • Published : 2003.06.01

Abstract

In order to simulate the crack connection between cords and the interply crack growth in the belt-layer of real tire, 2 ply rubber/cord laminate specimens with exposed edges were tested in 4~11mm displacement control. Measurement of the crack connection is evaluated when crack reaches the half of the length between 45$^{\circ}$ aligned cords, and the amount of the crack growth is measured by the steel probe method. 2 dimensional analytic modeling was performed to simulate the crack connection between cords at the exposed edges. Also, the theoretical life of the specimens was calculated from the crack connection life between cords(critical value) and from the critical value to the final failure by the use of Tearing energy(T); the strain energy release per unit area of one fracture surface of a crack. Then, theoretical life was compared with those of experiments. The life prediction up to the critical value has about 20% error compared to experimental life, and up to the final failure about 65% error. Therefore, total theoretical life has about 45% error compared to the experimental life, which is conceivable in the case of rubber.

타이어 벨트층내의 코드간 균열연결 및 층간균열진전을 모사하기 위해 자유단을 갖는 2층 고무/코드 적층시험편에 대한 4~11mm 변위제어 실험을 수행하였다. 자유단의 코드간 균열연결시의 폭방향 균열진전량은 45$^{\circ}$ 경사진 코드들간 길이의 절반에 도달할 때의 측정값으로 하였으며, 이는 탐침법에 의해 측정되었다 또한, 자유단에서 코드들간 균열연결을 모사하기위해 2차원의 이상화된 모델링 기법을 고안하였다. 이론수명은 테어링에너지(균열파단면의 단위면적당 방출에너지)를 이용하여 코드간 균열연결수명(임계값)과 이후 최종파손까지의 수명으로 구분하였으며, 이들을 각기 실험값과 비교하였다. 임계값까지의 수명예측은 실험과 비교하여 약 20%, 최종파손까지 약 65%의 오차가 발생하였다. 따라서, 전체 이론수명은 실험과 비교하여 약 45%의 오차를 발생하였다.

Keywords

References

  1. J.Polym.Sci. v.10 Rivlin,R.S.;Thomas A.G. https://doi.org/10.1002/pol.1953.120100303
  2. Rubber Chemistryand Technology v.62 Crack Initiation and Propagation in Model Cord-Rubber Composites Huang,Y.S.;Yeoh,O.H.
  3. Journal of Composite Materials v.4 Interlaminar Stresses in Composite Laminates under Uniforion Pipes,R.B.;Pagano,No.j. https://doi.org/10.1177/002199837000400409
  4. Fiber science and Technology v.17 Interlaminar Shear Effects in Cord-Rubber Composites Ford,J.L.;Patel,H.P.;Turner,J.L. https://doi.org/10.1016/0015-0568(82)90021-5
  5. Journal of Composite Materials v.18 Experimental and Analytical Studies on the Onset of Delamination in Laminated Composites Kim,R.Y.;Soni,S.R. https://doi.org/10.1177/002199838401800106
  6. Journal of Composite Materials v.8 Stress Fracture Criteria for Laminated Composites Containing Stress Concentrations Whitney,J.M.;Nuismer,R.J. https://doi.org/10.1177/002199837400800303
  7. Journal of Composite Materials v.22 Quadratic Stress Criterion for Initiation of Delamination Brewer,J.C.;Lagace,P.A. https://doi.org/10.1177/002199838802201205
  8. Damage in composite Material,ASTM STP v.775 Characterization of Delamination Onset and Growth in a Composite Laminate O'Brien,T.K.;K.L.Reifsnider(ed.)
  9. Journal of Composite Materials v.5 Moire Analysis of the Interlaminar Shear Edge Effect in Laminated Composites Pipes,R.B.;Daniel,I.M. https://doi.org/10.1177/002199837100500211
  10. J.Appl.Polymer Sci. v.8 Gent,A.N.;Lindley,P.B.;Thomas,A.G. https://doi.org/10.1002/app.1964.070080129
  11. Philos. Trans. R. Soc. v.A299 Breidenbach,R.F.;Lake,G.J.
  12. ABAQUS Theory Manual(Version 5.5)