DOI QR코드

DOI QR Code

Osteoblast Cell Morphology, Proliferation, and Differentiation in Variation with Biomaterials

생체재료의 선택에 따른 조골세포의 형상, 증식 및 분화

  • 김학관 (㈜우리동명 치과재료연구소) ;
  • 장주웅 (㈜우리동명 치과재료연구소) ;
  • 정희석 (㈜우리동명 치과재료연구소) ;
  • 이득용 (대림대학 재료정보공학과)
  • Published : 2003.06.01

Abstract

Osteoblast-like cell morphology, proliferation, and differentiation were examined in variation with biomaterials. Cells were cultured on TiO$_2$, Ti, 3Y-TZP, HA (Hydroxyapatite) and Thermanox was used as a control specimen. Generally, all specimens have similar cell morphology within the same time interval. However, cells on HA seem to be more thicker than those on TiO$_2$, Ti, 3Y-TZP and cell overlapping was detected very frequently on HA. In case of cell proliferation and differentiation, bioactive material such as HA could help osteoblast-like cell proliferate and provoke a sharp increase of ALP. On the other hand, whether the substrate material is a bioinert ceramics or metal, it does not so strongly affect the cell attachment, proliferation. and differentiation.

재료의 선택에 따른 생체친화성을 고찰하기 위해서 조골세포의 세포배양실험을 실시하였으며, 이로부터 세포의 부착형상, 증식, 분화의 정도를 살펴보았다. 본 실험에서 세포배양모재는 체내식립재료로 주목을 받고 있는 TiO$_2$, 3Y-TZP, HA (Hydroxyapatite) 그리고 Ti를 사용하였으며 대조군으로 Thermanox를 선택하였다. 일반적으로 모든 시편들은 같은 세포배양시간일때 거의 유사한 세포부착형상을 보였다. 그러나, HA위의 세포들은 나머지 시편들보다 좀 더 두꺼운 형상을 보였으며 빠른 세포의 부착 및 퍼짐으로 인한 overlapping이 자주 관찰되었다. 세포의 증식 및 분화의 경우에도 생체활성의 특성을 지니는 HA가 가장 높은 값을 보였으며 생체불활성재료인 경우에는 Ti, TiO$_2$, 3Y-TZP모두 유의한 차이를 보이지 않고 비슷한 경향을 나타내었다.

Keywords

References

  1. J. Oral Rehab. v.18 Bioactive Glass Particulate Material as a Filler for Bone Lesions E.Schepers;M.Declercq;P.Ducheyne;R.Kempeneers https://doi.org/10.1111/j.1365-2842.1991.tb01689.x
  2. J. Biomed. Mater. Res. v.29 Bioactive Material Template for in vitro Synthesis of Bone A.El-Ghannam;P.Ducheyne;I.M.Shapiro https://doi.org/10.1002/jbm.820290311
  3. Surgery v.39 An Investigation of Tissue Tolerance to Titanium Metal Implants in Dogs O.E.Beder;G.Eade
  4. Acta Orthop. Scand. v.52 Osseointegrated Titanium Implants T.Albrektsson;P.I.Branemark;H.A.Hansson;J.Lindstrom https://doi.org/10.3109/17453678108991776
  5. J. Periodontol. v.62 Titanium Endosseous Implant-soft Tissue Interface T.G.Donley;W.B.Gillette https://doi.org/10.1902/jop.1991.62.2.153
  6. An Introduction(2nd ed.) Biomaterials J.B.Park;R.S.Lakes
  7. Biomaterials v.5 Systemic Effects of Biomaterials J.Black https://doi.org/10.1016/0142-9612(84)90061-9
  8. Electrochimica Acta v.29 Potentiodynamic Behavior of Mechanically Polished Titanium Electrodes O.R.Camara;C.P.De Pauli;M.C.Giordano https://doi.org/10.1016/0013-4686(84)87163-7
  9. J. Electrochem. Soc. v.133 Photoelectrochemical Investigations of Passive Films on Titanium Electrodes K.Leiner;J.W.Schultze;U.Stimming https://doi.org/10.1149/1.2108969
  10. J. Biomed. Mater. Res. v.29 Initial Bone Matrix Formation at the Hydrooxyapatite Interface in vivo J.D.de Brunjin;C.A.van Blitterswijk;J.E.Davies https://doi.org/10.1002/jbm.820290113
  11. Biomaterials v.12 Effect of Surface Treatment on the Dissolution of Titanium-based Implant Materials A.Wisbey;P.J.Gregson;L.M.Peter;M.Tuke https://doi.org/10.1016/0142-9612(91)90144-Y
  12. Appl. Surf. Sci. v.72 Electrochemical Corrosion Analysis and Characterization of Surface-modified Titanium J.L.Ong;L.C.Lucas;G.N.Raiker;J.C.Gregory https://doi.org/10.1016/0169-4332(93)90036-B
  13. Biomaterials v.11 Effect of Calcium Phosphate Coating Characteristics on Early Post-operative Bone Tissue Ingrowth P.Ducheyne;J.Beight;J.Cuckler;B.Evans;S.Radin https://doi.org/10.1016/0142-9612(90)90073-Y
  14. Biomaterials v.15 Structural Arrangements at the Interface between Plasma Sprayed Calcium Phophates and Bone J.D.de Bruijin;Y.P.Bovell;C.A.van Blitterswijk https://doi.org/10.1016/0142-9612(94)90021-3
  15. J. Biomed. Mater. Res. v.27 In vitro Evaluation of Amorphous Calcium Phosphate and Poorly Crystallized Hydroxyapatite Coating on Titanium Implants S.H.Maxian;J.P.Zawadski;M.G.Dunn https://doi.org/10.1002/jbm.820270114
  16. J. Biol. Chem. v.193 Protein Measurement with the Folin Phenol Reagent O.H.Lowry;N.J.Rosebrough;A.L.Farr;R.J.Randall
  17. Anal. Biochem. v.22 A Rapid and Sensitive Method for the Quantification of Microgram Quantities of Protein Utilizing the Principle of Protein-dye Binding M.M.Braford
  18. J. Biomed. Mater. Res. v.23 Effects of a Grooved Titanium Coated Implant Surface on Epithelial Cell Behaviour, in vitro and in vivo B.Chehroudi;T.R.L.Gould;D.M.Brunette https://doi.org/10.1002/jbm.820230907
  19. J. Biomed. Mater. Res. v.24 Titanium-coated Micromachined Grooves of Different Dimensions Affect Epithelial and Connective Tissue Cells Differently in vivo B.Chehroudi;T.R.L.Gould;D.M.Brunette https://doi.org/10.1002/jbm.820240906
  20. J. Biomed. Mater. Res. v.14 Effect of Hydroxyapatite Impregnation on Skeletal Bonding of Porous Coated Implants P.Ducheyne;L.L.Hench;A.Kagan;M.Martens;A.Bursens;J.C.Mulier https://doi.org/10.1002/jbm.820140305
  21. J. Biomed. Mater. Res. v.20 Use of Tricalcium Phosphate or Electrical Stimulation to Enhance the Bone-Porous Implant Interface J.L.Berry;J.M.Geiger;J.M.Moran;J.S.Skraba;A.S.Greenwald https://doi.org/10.1002/jbm.820200107
  22. J. Biomed. Mater. Res. v.27 The Effect of Calcium Phosphate Ceramic Composition and Structure on in vitro Behaviour. I. Dissolution P.Ducheyne;S.Radin;L.King https://doi.org/10.1002/jbm.820270105
  23. J. Biomed. Mater. Res. v.23 Transformation of Biphasic Calcium Phosphate Ceramics in vivo: Ultrastructural and Physicochemical Characterization G.Daculsi;R.Z.LeGeros;E.Nery;K.Lynch;B.Kerebel https://doi.org/10.1002/jbm.820230806
  24. J. Biomed. Mater. Res. v.32 Surface Roughness Modulates the Local Production of Growth Factors an Cytokines by Osteoblast-like MG63 Cells K.Kieswetter;Z.Schwartz;T.W.Hummert;D.L.Cochran;J.Simpson;D.D.Dean;B.D.Boyan https://doi.org/10.1002/(SICI)1097-4636(199609)32:1<55::AID-JBM7>3.0.CO;2-O
  25. J. Biomed. Mater. Res. v.39 Titanium Surface Roughness Alters Responsiveness to 1α,25-$(OH)_{2}D_{3}$ B.D.Boyan;R.Batzer;K.Kieswetter;Y.Liu;D.L.Cochran;S. Szmuckler-Moncler;D.D.Dean;Z.Schwartz https://doi.org/10.1002/(SICI)1097-4636(199801)39:1<77::AID-JBM10>3.0.CO;2-L
  26. Biomaterials v.17 Evaluation of Implant Materials (Hydroxyapatite, Glass-ceramics, Titanium) in Rat Bone Marrow Stomal Cell Culture S.Ozawa;S.Kasugai https://doi.org/10.1016/0142-9612(96)80751-4
  27. J. Bone Jt. Surg. v.71 The Effect of Hydroxyapatite Coating on Bone Growth into Porous Titanium Alloy Implants H.Oonishi;M.Yamamoto;H.Ishimaru;E.Tsuji;S.Kushitani;M.Aono;Y.Ukon
  28. J. Mater. Sci. Mater. Med. v.12 Hydroxyapatite Particles are Capable of Inducing Osteoclast Formation A.Sabokbar;R.Pandey;J.Diaz;J.M.W.Quinn;D.W.Murray;N.A.Athanasou https://doi.org/10.1023/A:1011267005465
  29. University of Michigan Researcher Reports Substance Checked in Routine Blood Test may Forecast Bone Loss and Osteoporosis J.Lukacs