Partial Characterization of the Pathogenic Factors Related to Chlamydia trachomatis Invasion of the McCoy Cell Membrane

  • Yeo, Myeng-Gu (Department of Biological Science, College of Natural Sciences, Chosun University) ;
  • Kim, Young-Ju (Department of Biological Science, College of Natural Sciences, Chosun University) ;
  • Park, Yeal (Department of Biological Science, College of Natural Sciences, Chosun University)
  • Published : 2003.06.01

Abstract

The present study was performed to identify pathogenic factors of Chlamydia trachomatis, which invade the host cell membrane. We prepared monoclonal antibody against C. trachomatis and searched for pathogenic factors using this antibody, and subsequently identified the surface components of the elementary body of C. trachomatis, i.e., major outer membrane protein (MOMP), lipopolysaccharide (LPS), and two other surface exposure proteins. These proteins are believed to be important in the pathogenesis of host cell chlamydial infection. Additionally, to identify factors related to the host cell and C. trachomatis, we prepared C. trachomatis infected and non-infected McCoy cell extracts, and reacted these with anti-chlamydial LPS monoclonal antibody. We found that anti-chlamydial LPS monoclonal antibody reacted with a 116 kDa proteinaceous McCoy cell membrane component.

Keywords

References

  1. J. Bacteriol. v.151 Chlamydia trachomatis has penicillin-binding proteins but not detectable muramic acid Barbour,A.G.;K.I,Amano;T.Hackstadt;L.Perry;H.D.Caldwell
  2. Infect. Immun. v.50 Differences in outer membrane proteins of lymphogranuloma venereum and trachoma biovars of Chlamydia trachomatis Batteiger,B.E.;W.J.Newhall V.;R.B.Jones
  3. Infect. Immune. v.44 Role of disulfide binding in outer membrane structure and permeability in Chlamydia tachomatis Baviol,P.;O.Ohlin;J.Schachter
  4. Biochemistry v.30 Heparin-binding lectin from human placenta: further characterization of ligand binding and structural properties and its relationship to histones and heparin-binding growth factors Beatrix,K.;H.J.Gabius https://doi.org/10.1021/bi00215a009
  5. Cell v.73 Signal transduction in the mammalian cell during bacterial attachment and entry Bliska,J.B.;J.E.Galan;S.Falkow https://doi.org/10.1016/0092-8674(93)90270-Z
  6. Anal. Biochem. v.72 A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding Braford,M.M. https://doi.org/10.1016/0003-2697(76)90527-3
  7. Infect. Immun. v.31 Purification and partial characterization of the major outer membrane protein of Chlamydia trachomatis Caldwell,H.D.;J.Kromhout;J.Schachter
  8. Infect. Immun. v.38 Structural analysis of Chalmydial major outer membrane proteins Caldwell,H.D.;R.C.Jude
  9. J. Biol. Chem. v.257 no.20 Insulin binding leads to the formation of covalent (-S-S) hormone receptor complex Clark,S.;L.C.Harrison
  10. J. Bacteriol. v.146 Identification of a major envelope protein in Chlamydia psittaci Hatch,T.P.;D.W.Vance,Jr.;E.Al-Houssainy
  11. J. Bacteriol. v.157 Structural and polypeptide differences between envelopes of infective and reproductive life cycle forms of Chlamydia spp. Hatch,T.P.;I.Allan;J.H.Pearce
  12. J. Bacteriol. v.165 Synthesis of disulfide-bounded outer membrane proteins during the developemental cycle of Chlamydia psittaci and Chlamydia trachomatis Hatch,T.P.;M.Micell;J.E.Sublett
  13. J. Protozool. v.22 Ultrastructure of the invasion of Eimeria magna sporozoites into cultured cells Jensen,J.B.;D.M.Hammond https://doi.org/10.1111/j.1550-7408.1975.tb05193.x
  14. Eur. J. Cell Biol. v.46 The parasitophorous vacuole membrane of Plasmodium falciparum: demonstration of vesicle formation using an immunoprobe Kara,U.A.K.;D.J.Stenzel;L.T.Ingram;C.Kidson
  15. J. Infect. Dis. v.125 Differentiation of TRIC and LGV organisms based on enhancement of infectivity by DEAE-dextran in cell culture Kuo,C.C.;S.P.Wang;J.T.Grayston
  16. Infect. Immun. v.13 Interaction of Chlamydia trachomatis with HeLa 229 cells Kuo,C.C.;J.T.Grayston
  17. J. Clin. Microbiol. v.26 Factors affection viability and growth in HeLa 229 cells of chlamydia sp. strain TWRA Kuo,C.C.;J.T.Grayston
  18. Nature (London) v.227 Cleavage of structural proteins during the assembly of the head of bacteriophage T4 Laemmli,U.K. https://doi.org/10.1038/227680a0
  19. J. Biol. Chem. v.193 Protein measurement with the Folin-phenol reagent Lowry,O.H.;N.J.Rosenbrough;A.L.Farr;R.J.Randell
  20. Infect. Immun. v.50 Neutralization of Chlamydia trachomatis cell culture infection by serovar-specific monoclonal antibodies Lucero,M.E.;C.C.Kuo
  21. Microbiol. Rev. v.49 Comparative biology of intracellular parasitism Moulder,J.W.
  22. Infect. Immun. v.35 Association between resistance to superinfection and patterns of surface protein labeling in mouse fibroblasts (L cell) persistently inferted with Chlamydia psittaci Moulder,J.W.;S.L.Zeichner;N.J.Levy
  23. Infect. Immun. v.38 Analysis of human serological response to proteins of Chlamydia trachomatis Newhall,W.J.;B.Batteiger;R.B.Jones
  24. J. Bacteriol. v.154 Disulfide-linked oligomers of the major outer membrane protein of Chlamydiae Newhall,W.J.V.;R.B.Jones
  25. Infect. Immun. v.48 Antigenic properties of Chlamydia trachomatis lipopolysaccharide Nurminen,B.L.;P.H.Makela;H.Brade
  26. Infect. Immun. v.46 In vitro neutralization of Chlamydia trachomatis with monoclonal antibody to an epitope detected on the major outer membrane protein Peeling,R.;I.Naclean;R.C.Brunham
  27. J. Clin. Pathol. v.28 Laboratory procedures for the isolation of Chlamydia trachomatis from the human genital track Reeve,P.;J.Owen;J.D.Oriel https://doi.org/10.1136/jcp.28.11.910
  28. J. Clin. Microbiol. v.6 Cultivation of Chlamydia trachomatis in cyclohexmide-treated McCoy cells Ripa,K.T.;P.Mardh
  29. Mol. Microbiol. v.15 Cloning and characterization of Chlamydia psittaci gene coding for a protein localized in the inclusion membrane of infected cells Rockey,D.D.;R.A.Heinzen;T.Hackstadt https://doi.org/10.1111/j.1365-2958.1995.tb02371.x
  30. J. Gen. Microbiol. v.123 Polypeptide composition of Chlamydia trachomatis Salari,S.H.;M.E.ward
  31. Ann. Rev. Microbiol. v.34 Chlamydiae Schachter,J.;Caldwell,H.D. https://doi.org/10.1146/annurev.mi.34.100180.001441
  32. Science v.263 Remodeling schemes of intracellular pathogens Small,P.L.;C.L.Ramakrishnan;S.Falkow https://doi.org/10.1126/science.8303269
  33. J. Immunol. v.28 Monoclonal antibodies to Chlamydia trachomatis; Antibody specificity and antigen characterization Stephens,R,S.;M.R.Tam;C.C.Kuo;R.C.Nowinski
  34. Infect. Immun. v.64 The late chlamydial inclusion membrane is not derived from the endocytic pathway and is relatively deficient in host proteins Taraska,T.;D.M.Ward;R.S.Ajioka;P.R.Wyrick;S.R.Davis-Kaplan;C.H.Davis;J.Kaplan
  35. J. Clin. Pathol. v.38 Sensitivity of detecting Chlamydia trachomatis elementary bodies in smears by use of a fluorescein-labeled monoclonal antibody compare to that of conventional chlamydial isolations Thomas,B.J.;R.T.Evans;D.A.Hawkins;D.Taylor-Robinson https://doi.org/10.1136/jcp.38.4.399
  36. J. Clin. Microbiol. v.23 Evaluation of an enzyme immunoassay for the diagnosis of chlamydial infections in urogenital specimens Tjiam,K.H.;B.Y.M.van Heijst;A van Zuren;J.H.T.Wagenvoort;T.van Joost;E.Stolz;M.R.Michel
  37. Proc. Natl. Acad. Sci. USA v.76 Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets Towbin,H.;T.Stachelin;J.Gordon https://doi.org/10.1073/pnas.76.9.4350
  38. Ph.D. thesis. Chosun University Yeo,M.G.
  39. Cell v.69 Mechanism of C. trachomatis attachment to eukaryotic host cells Zhang,J.P.;R.S.Stephens https://doi.org/10.1016/0092-8674(92)90296-O
  40. J. Immunol. v.138 Protective monoclonal antibodies recognize epitope located on the major outer membrane protein of Chlamydia trachomatis Zhang,Y.X.;S.Stewart;T.Joseph;H.R.Taylor;H.D.Caldwell