Optimization for the Salting Process of Eggplant(Chukyang) for Export Using Response Surface Methodology

수출용 축양품종 가지의 염절임 공정의 최적화

  • 남학식 (대구한의대학교 한방식품과학부) ;
  • 김남우 (대구한의대학교 한방생명자원학과) ;
  • 황성희 (대구가톨릭대학교 식품공학과) ;
  • 윤광섭 (대구가톨릭대학교 식품공학과) ;
  • 신승렬 (대구한의대학교 한방식품과학부)
  • Published : 2003.09.01

Abstract

This study was conducted to the optimize salting process of eggplant for development new product and enhancement quality for export. Three variables by five level central composite design and response surface methodology were used to determine optimum conditions for salting time, temperature and salt concentration. Optimization of the process was conducted using the combination of the moisture content, salinity and color of surface and inside of salted eggplant. The regression polynomial model was suitable (P>0.05) by Lack-of-Fit analysis with highly significant. To optimize the process, based on surface response and contour plots, the individual contour plots of the response variables were superimposed. The optimum conditions for this process were 6 days and 15$^{\circ}C$ at 30% concentration under the optimum of restricted variables as moisture content was below 84%, salinity was below 14%, L and b value of surface were 10 to 20 and below 0, L value and b value of inside were 70 to 75 and 16 to 18.

가지의 수출 경쟁력 향상을 위한 한 방안으로 수출용 가지품종인 축양품종을 염가공품으로 개발하기 위하여 염절임 공정을 최적화하였다. 염절임 시간, 절임온도, 염농도를 독립변수로 하고 절임 후 수분함량, 염도, 표면과 내부의 색도 등을 종속변수로 하여, 중심합성계획법으로 실험을 설계하여 최적조건을 얻고자 하였다. 수립된 이차회귀모형으로 예측식을 수립할 수 있었으며 특히 수분함량이나 염도, 표면과 내부의 L과 b 값에 대하여 높은 적합도를 보여 최적조건을 수립하기 위한 제한 변수로 선정하였다. 염농도를 중심점(30%)에서 고정시켜서 얻은 절임시간과 온도는 각각 5.5-6.5일과 13-17$^{\circ}C$였으며, 이때의 종속변수의 제한 요건으로는 수분함량 84%이하, 염도 14%이하 표면 L 값 10-20, b값 0 이하, 내부 L 값은 70-75, b 값이 16-18이었다.

Keywords

References

  1. 강인회 (1991) 한국식생활사. 삼영사. 서울. p186
  2. Park, S.W., Kwon, Y., Chi, S.H., Hong, S.J. and Park, Y.M (1999) Effects of shipping temperature on quality changes of cucumber, eggplant, melon, and cherry-tomato fruit during simulated export and marketing. Kor. J. Hart. Sci. & Tech., 17, 118-122
  3. Lee, G.J., Eun, J.S., Kim, M.J. and Urn, Y.C. (2000) Effect of flower type and seed distribution on the fruit shape of eggplant(Solanum melongena L.). Bulletin of Agricultural College, Chonbuk National University, 31, 65-72
  4. Park, S.W., Kwon, Y, Chi, S.H. and Park, Y.M (1998) Effect of container temperature on flavor, firmness and storability during export of cucumber, eggplant, melon and cherry-tomato fruits. Kor. J. Hart. Sci. & Tech., 16(1), 83
  5. Kim, J, Cho,J.H., Ryu, J, Um, Y.C, Kim, E.J., Sea, S.Y., Jin, S.Y., and Choi, Y.G. (2001) Effect of ionic strength on the growth and yield in eggplant hydroponics. Kor. J. Hart. Sci. & Tech., 19(5UPPL. II), 49
  6. Lee, J.S., Um, Y.C. and Shin, Y.A. (2002) Effect of plant growth regulator on fruit setting and yield of eggplant(Solanum melongena L.). Kor. J. Hort. Sci. & Tech., 20(SUPPL. I), 51
  7. Chartzoulakis, K.S. and Loupassaki, M.H. (1997) Effects of NaCl salinity on germination, growth, gas exchange and yield of greenhouse eggplant. Agricultural Water Management., 32, 215-225 https://doi.org/10.1016/S0378-3774(96)01276-0
  8. Savvas, D. and Lenz, F. (2000) Effects of NaCI or nutrient-induced salinity on growth, yield, and composition of eggplants grown in rockwool. Scientia Horticulturae., 84, 37-47 https://doi.org/10.1016/S0304-4238(99)00117-X
  9. Jha, S.N. and Matsuoka, T. (2002) Surface stiffness and density of eggplant during storage. Journal of Food Engineering., 54, 23-26 https://doi.org/10.1016/S0260-8774(01)00181-9
  10. Fallik, E., Temkin-Gorodeiski, N., Grinberg, S. and Davidson, H. (1995) Prolonged low-temperature storage of eggplants in polyethylene bags. Postharvest Biology and Technology., 5, 83-89 https://doi.org/10.1016/0925-5214(94)00010-P
  11. Lee, G.D., Kee J.E. and Kwon J.H. (2000) Application of response surface methodology in food chemistry. Food and Industry. 33, 33-45
  12. Park, S.H (1991) Design of experiments. Minyoung Co., Seoul, pp.575-618
  13. Hong, J.H, Youn, K.S. and Choi, Y.H (1998) Optimization for the process of osmotic dehydration for the manufacturing of dried kiwifruit. Korean J. Food Sci. Technol., 30, 348-355
  14. Jung, J.L., Kim, M.K, Kwon, S.H. and Kim, M.J. (1993) Salting of dried jujube and sensory quality, J. Food Sci. & Tech., 5, 47-60
  15. Lee, M.H., Oh, Y.A., No, H.K. and Kim S.D. (1992) Quality of various pickles fermented with oriental melon, J. Food Sci. & Tech., 4, 37-60
  16. Kim, J.M, Shin, M.K and Hwang, H.S. (1989) Physico-chemical changes of radish cubes for kakdugi, Korean J. Food Sci. Technol., 21, 300-309
  17. Kim, S.D. and Kim, M.J. (1988) Changes of salt and calcium concentration in radish during salting, J. Korean Soc. Food Nutr., 17, 110-114
  18. Han, K.Y. and Noh, B.S. (1996) Characterization of chinese cabbage during soaking in sodium chloride solution, Korean J. Food Sci. Technol., 28, 707-713
  19. Kim, S.D., Ku, Y.S., Lee, I.Z., Park, I.K and Youn K.S. (2001) Optimization. for hot water extraction condition of Liriope spicata tuber using response surface methodology, Korean J. Postharvest Sci. Technol., 8, 157-163